Success and virulence in Toxoplasma as the result of sexual recombination between two distinct ancestries - PubMed (original) (raw)
. 2001 Oct 5;294(5540):161-5.
doi: 10.1126/science.1061888.
Affiliations
- PMID: 11588262
- DOI: 10.1126/science.1061888
Success and virulence in Toxoplasma as the result of sexual recombination between two distinct ancestries
M E Grigg et al. Science. 2001.
Abstract
Toxoplasma gondii is a common human pathogen causing serious, even fatal, disease in the developing fetus and in immunocompromised patients. Despite its ability to reproduce sexually and its broad geographic and host range, Toxoplasma has a clonal population structure comprised principally of three lines. We have analyzed 15 polymorphic loci in the archetypal type I, II, and III strains and found that polymorphism was limited to, at most, two rather than three allelic classes and no polymorphism was detected between alleles in strains of a given type. Multilocus analysis of 10 nonarchetypal isolates likewise clustered the vast majority of alleles into the same two distinct ancestries. These data strongly suggest that the currently predominant genotypes exist as a pandemic outbreak from a genetic mixing of two discrete ancestral lines. To determine if such mixing could lead to the extreme virulence observed for some strains, we examined the F(1) progeny of a cross between a type II and III strain, both of which are relatively avirulent in mice. Among the progeny were recombinants that were at least 3 logs more virulent than either parent. Thus, sexual recombination, by combining polymorphisms in two distinct and competing clonal lines, can be a powerful force driving the natural evolution of virulence in this highly successful pathogen.
Similar articles
- Genetic analysis of natural recombinant Brazilian Toxoplasma gondii strains by multilocus PCR-RFLP.
Ferreira Ade M, Vitor RW, Gazzinelli RT, Melo MN. Ferreira Ade M, et al. Infect Genet Evol. 2006 Jan;6(1):22-31. doi: 10.1016/j.meegid.2004.12.004. Epub 2005 Feb 12. Infect Genet Evol. 2006. PMID: 16376837 - Population structure and mouse-virulence of Toxoplasma gondii in Brazil.
Pena HF, Gennari SM, Dubey JP, Su C. Pena HF, et al. Int J Parasitol. 2008 Apr;38(5):561-9. doi: 10.1016/j.ijpara.2007.09.004. Epub 2007 Sep 21. Int J Parasitol. 2008. PMID: 17963770 - Recent expansion of Toxoplasma through enhanced oral transmission.
Su C, Evans D, Cole RH, Kissinger JC, Ajioka JW, Sibley LD. Su C, et al. Science. 2003 Jan 17;299(5605):414-6. doi: 10.1126/science.1078035. Science. 2003. PMID: 12532022 - Differences among the three major strains of Toxoplasma gondii and their specific interactions with the infected host.
Saeij JP, Boyle JP, Boothroyd JC. Saeij JP, et al. Trends Parasitol. 2005 Oct;21(10):476-81. doi: 10.1016/j.pt.2005.08.001. Trends Parasitol. 2005. PMID: 16098810 Review. - [Toxoplasma gondii--known and unknown parasite].
Długońska H. Długońska H. Wiad Parazytol. 2008;54(3):199-204. Wiad Parazytol. 2008. PMID: 19055060 Review. Polish.
Cited by
- Sulfadiazine resistance in Toxoplasma gondii: no involvement of overexpression or polymorphisms in genes of therapeutic targets and ABC transporters.
Doliwa C, Escotte-Binet S, Aubert D, Sauvage V, Velard F, Schmid A, Villena I. Doliwa C, et al. Parasite. 2013;20:19. doi: 10.1051/parasite/2013020. Epub 2013 May 27. Parasite. 2013. PMID: 23707894 Free PMC article. - Multiplex PCR for typing strains of Toxoplasma gondii.
Ajzenberg D, Dumètre A, Dardé ML. Ajzenberg D, et al. J Clin Microbiol. 2005 Apr;43(4):1940-3. doi: 10.1128/JCM.43.4.1940-1943.2005. J Clin Microbiol. 2005. PMID: 15815026 Free PMC article. - Meiotic sex in Chagas disease parasite Trypanosoma cruzi.
Schwabl P, Imamura H, Van den Broeck F, Costales JA, Maiguashca-Sánchez J, Miles MA, Andersson B, Grijalva MJ, Llewellyn MS. Schwabl P, et al. Nat Commun. 2019 Sep 3;10(1):3972. doi: 10.1038/s41467-019-11771-z. Nat Commun. 2019. PMID: 31481692 Free PMC article. - Severe acquired toxoplasmosis in immunocompetent adult patients in French Guiana.
Carme B, Bissuel F, Ajzenberg D, Bouyne R, Aznar C, Demar M, Bichat S, Louvel D, Bourbigot AM, Peneau C, Neron P, Dardé ML. Carme B, et al. J Clin Microbiol. 2002 Nov;40(11):4037-44. doi: 10.1128/JCM.40.11.4037-4044.2002. J Clin Microbiol. 2002. PMID: 12409371 Free PMC article. - Linkage maps from multiple genetic crosses and loci linked to growth-related virulent phenotype in Plasmodium yoelii.
Li J, Pattaradilokrat S, Zhu F, Jiang H, Liu S, Hong L, Fu Y, Koo L, Xu W, Pan W, Carlton JM, Kaneko O, Carter R, Wootton JC, Su XZ. Li J, et al. Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):E374-82. doi: 10.1073/pnas.1102261108. Epub 2011 Jun 20. Proc Natl Acad Sci U S A. 2011. PMID: 21690382 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical