Mother-to-child transmission of HIV infection and CTL escape through HLA-A2-SLYNTVATL epitope sequence variation - PubMed (original) (raw)
. 2001 Nov 1;79(1-2):109-16.
doi: 10.1016/s0165-2478(01)00272-3.
C Pasquier, E C Holmes, B Liang, Y Tang, J Izopet, K Saune, E S Rosenberg, S K Burchett, K McIntosh, M Barnardo, M Bunce, B D Walker, C Brander, R E Phillips
Affiliations
- PMID: 11595297
- DOI: 10.1016/s0165-2478(01)00272-3
Mother-to-child transmission of HIV infection and CTL escape through HLA-A2-SLYNTVATL epitope sequence variation
P J Goulder et al. Immunol Lett. 2001.
Abstract
Cytotoxic T lymphocytes (CTL) play a central role in containment of HIV infection. Evasion of the immune response by CTL escape is associated with progression to disease. It is therefore hypothesised that transmitted viruses encode escape mutations within epitopes that are required for successful control of viraemia. In order to test this hypothesis, escape through the dominant HLA-A2-restricted CTL epitope SLYNTVATL (p17 Gag residues 77-85 SL9) in the setting of mother-to-child-transmission (MTCT) was investigated. Initial data from two families in which the HIV-infected mother expressed HLA-A*0201 and had transmitted the virus to other family members were consistent with this hypothesis. In addition, analysis of the gag sequence phylogeny in one family demonstrated that CTL escape variants can be successfully transmitted both horizontally and vertically. To test the hypothesis further, a larger cohort of transmitting mothers (n=8) and non-transmitters (n=14) were studied. Variation within the SL9 epitope was associated with expression of HLA-A2 (P=0.04) but overall no clear link between variation from the SL9 consensus sequence and MTCT was established. However, the high level of background diversity within p17 Gag served to obscure any possible association between escape and MTCT. In conclusion, these studies highlighted the obstacles to demonstrating CTL escape arising at this particular epitope. Alternative strategies likely to be more definitive are discussed.
Similar articles
- Efficient processing of the immunodominant, HLA-A*0201-restricted human immunodeficiency virus type 1 cytotoxic T-lymphocyte epitope despite multiple variations in the epitope flanking sequences.
Brander C, Yang OO, Jones NG, Lee Y, Goulder P, Johnson RP, Trocha A, Colbert D, Hay C, Buchbinder S, Bergmann CC, Zweerink HJ, Wolinsky S, Blattner WA, Kalams SA, Walker BD. Brander C, et al. J Virol. 1999 Dec;73(12):10191-8. doi: 10.1128/JVI.73.12.10191-10198.1999. J Virol. 1999. PMID: 10559335 Free PMC article. - Impaired processing and presentation of cytotoxic-T-lymphocyte (CTL) epitopes are major escape mechanisms from CTL immune pressure in human immunodeficiency virus type 1 infection.
Yokomaku Y, Miura H, Tomiyama H, Kawana-Tachikawa A, Takiguchi M, Kojima A, Nagai Y, Iwamoto A, Matsuda Z, Ariyoshi K. Yokomaku Y, et al. J Virol. 2004 Feb;78(3):1324-32. doi: 10.1128/jvi.78.3.1324-1332.2004. J Virol. 2004. PMID: 14722287 Free PMC article. - Substantial differences in specificity of HIV-specific cytotoxic T cells in acute and chronic HIV infection.
Goulder PJ, Altfeld MA, Rosenberg ES, Nguyen T, Tang Y, Eldridge RL, Addo MM, He S, Mukherjee JS, Phillips MN, Bunce M, Kalams SA, Sekaly RP, Walker BD, Brander C. Goulder PJ, et al. J Exp Med. 2001 Jan 15;193(2):181-94. doi: 10.1084/jem.193.2.181. J Exp Med. 2001. PMID: 11148222 Free PMC article. - Escape of human immunodeficiency virus from immune control.
McMichael AJ, Phillips RE. McMichael AJ, et al. Annu Rev Immunol. 1997;15:271-96. doi: 10.1146/annurev.immunol.15.1.271. Annu Rev Immunol. 1997. PMID: 9143689 Review. - [Control of HIV infection and selection/ accumulation of HIV escape mutants by HIV-specific cytotoxic T lymphocytes (CTLs)].
Murakoshi H, Takiguchi M. Murakoshi H, et al. Uirusu. 2013;63(2):209-18. doi: 10.2222/jsv.63.209. Uirusu. 2013. PMID: 25366055 Review. Japanese.
Cited by
- Different abilities of escape mutant-specific cytotoxic T cells to suppress replication of escape mutant and wild-type human immunodeficiency virus type 1 in new hosts.
Fujiwara M, Tanuma J, Koizumi H, Kawashima Y, Honda K, Mastuoka-Aizawa S, Dohki S, Oka S, Takiguchi M. Fujiwara M, et al. J Virol. 2008 Jan;82(1):138-47. doi: 10.1128/JVI.01452-07. Epub 2007 Oct 24. J Virol. 2008. PMID: 17959671 Free PMC article. - Sexual transmission of single human immunodeficiency virus type 1 virions encoding highly polymorphic multisite cytotoxic T-lymphocyte escape variants.
Milicic A, Edwards CT, Hué S, Fox J, Brown H, Pillay T, Drijfhout JW, Weber JN, Holmes EC, Fidler SJ, Zhang HT, Phillips RE. Milicic A, et al. J Virol. 2005 Nov;79(22):13953-62. doi: 10.1128/JVI.79.22.13953-13962.2005. J Virol. 2005. PMID: 16254331 Free PMC article. - Pathogenic potential of borna disease virus lacking the immunodominant CD8 T-cell epitope.
Richter K, Baur K, Ackermann A, Schneider U, Hausmann J, Staeheli P. Richter K, et al. J Virol. 2007 Oct;81(20):11187-94. doi: 10.1128/JVI.00742-07. Epub 2007 Aug 8. J Virol. 2007. PMID: 17686872 Free PMC article. - Human immunodeficiency virus type 1 population genetics and adaptation in newly infected individuals.
Kearney M, Maldarelli F, Shao W, Margolick JB, Daar ES, Mellors JW, Rao V, Coffin JM, Palmer S. Kearney M, et al. J Virol. 2009 Mar;83(6):2715-27. doi: 10.1128/JVI.01960-08. Epub 2008 Dec 30. J Virol. 2009. PMID: 19116249 Free PMC article. - Impact of HLA in mother and child on disease progression of pediatric human immunodeficiency virus type 1 infection.
Thobakgale CF, Prendergast A, Crawford H, Mkhwanazi N, Ramduth D, Reddy S, Molina C, Mncube Z, Leslie A, Prado J, Chonco F, Mphatshwe W, Tudor-Williams G, Jeena P, Blanckenberg N, Dong K, Kiepiela P, Coovadia H, Ndung'u T, Walker BD, Goulder PJ. Thobakgale CF, et al. J Virol. 2009 Oct;83(19):10234-44. doi: 10.1128/JVI.00921-09. Epub 2009 Jul 15. J Virol. 2009. PMID: 19605475 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials