AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation - PubMed (original) (raw)
AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation
C Culmsee et al. J Mol Neurosci. 2001 Aug.
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a member of metabolite-sensing kinase family that plays important roles in responses of muscle cells to metabolic stress. AMPK is a heterotrimer of a catalytic alpha subunit (alpha1 or alpha2), and beta (beta1 or beta2) and gamma (gamma1 or gamma2) subunits. Because the brain has a high metabolic rate and is sensitive to changes in the supply of glucose and oxygen, we investigated the expression of AMPK in rat embryonic and adult brain and its role in modifying neuronal survival under conditions of cellular stress. We report that catalytic (alpha1 and alpha2) and noncatalytic (beta2 and gamma1) subunits of AMPK are present at high levels in embryonic hippocampal neurons in vivo and in cell culture. In the adult rat brain, the catalytic subunits alpha1 and alpha2 are present in neurons throughout the brain. The AMPK-activating agent AICAR protected hippocampal neurons against death induced by glucose deprivation, chemical hypoxia, and exposure to glutamate and amyloid beta-peptide. Suppression of levels of the AMPK alpha1 and alpha2 subunits using antisense technology resulted in enhanced neuronal death following glucose deprivation, and abolished the neuroprotective effect of AICAR. These findings suggest that AMPK can protect neurons against metabolic and excitotoxic insults relevant to the pathogenesis of several different neurodegenerative conditions.
Similar articles
- Knockout of the alpha2 but not alpha1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle.
Jørgensen SB, Viollet B, Andreelli F, Frøsig C, Birk JB, Schjerling P, Vaulont S, Richter EA, Wojtaszewski JF. Jørgensen SB, et al. J Biol Chem. 2004 Jan 9;279(2):1070-9. doi: 10.1074/jbc.M306205200. Epub 2003 Oct 21. J Biol Chem. 2004. PMID: 14573616 - AMPK activation regulates neuronal structure in developing hippocampal neurons.
Ramamurthy S, Chang E, Cao Y, Zhu J, Ronnett GV. Ramamurthy S, et al. Neuroscience. 2014 Feb 14;259:13-24. doi: 10.1016/j.neuroscience.2013.11.048. Epub 2013 Dec 1. Neuroscience. 2014. PMID: 24295634 - Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle.
Bultot L, Jensen TE, Lai YC, Madsen AL, Collodet C, Kviklyte S, Deak M, Yavari A, Foretz M, Ghaffari S, Bellahcene M, Ashrafian H, Rider MH, Richter EA, Sakamoto K. Bultot L, et al. Am J Physiol Endocrinol Metab. 2016 Oct 1;311(4):E706-E719. doi: 10.1152/ajpendo.00237.2016. Epub 2016 Aug 30. Am J Physiol Endocrinol Metab. 2016. PMID: 27577855 Free PMC article. - AMP-activated protein kinase in metabolic control and insulin signaling.
Towler MC, Hardie DG. Towler MC, et al. Circ Res. 2007 Feb 16;100(3):328-41. doi: 10.1161/01.RES.0000256090.42690.05. Circ Res. 2007. PMID: 17307971 Review. - AMP-activated protein kinase and muscle glucose uptake.
Musi N, Goodyear LJ. Musi N, et al. Acta Physiol Scand. 2003 Aug;178(4):337-45. doi: 10.1046/j.1365-201X.2003.01168.x. Acta Physiol Scand. 2003. PMID: 12864738 Review.
Cited by
- Protective effects of AMP-activated protein kinase in the cardiovascular system.
Xu Q, Si LY. Xu Q, et al. J Cell Mol Med. 2010 Nov;14(11):2604-13. doi: 10.1111/j.1582-4934.2010.01179.x. J Cell Mol Med. 2010. PMID: 20874722 Free PMC article. Review. - Resveratrol stimulates AMP kinase activity in neurons.
Dasgupta B, Milbrandt J. Dasgupta B, et al. Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7217-22. doi: 10.1073/pnas.0610068104. Epub 2007 Apr 16. Proc Natl Acad Sci U S A. 2007. PMID: 17438283 Free PMC article. - A pharmacological activator of AMP-activated protein kinase protects hypoxic neurons in a concentration-dependent manner.
Zhang X, Gao R, Li J, Qi Y, Song X, Zhao L, Wang H, Pu Y, Xu K, Li J. Zhang X, et al. Neurochem Res. 2010 Aug;35(8):1281-9. doi: 10.1007/s11064-010-0186-3. Epub 2010 May 20. Neurochem Res. 2010. PMID: 20490918 - The Epithelial-Mesenchymal Transition Influences the Resistance of Oral Squamous Cell Carcinoma to Monoclonal Antibodies via Its Effect on Energy Homeostasis and the Tumor Microenvironment.
Bai Y, Sha J, Okui T, Moriyama I, Ngo HX, Tatsumi H, Kanno T. Bai Y, et al. Cancers (Basel). 2021 Nov 24;13(23):5905. doi: 10.3390/cancers13235905. Cancers (Basel). 2021. PMID: 34885013 Free PMC article. Review. - AMPK at the nexus of energetics and aging.
Burkewitz K, Zhang Y, Mair WB. Burkewitz K, et al. Cell Metab. 2014 Jul 1;20(1):10-25. doi: 10.1016/j.cmet.2014.03.002. Epub 2014 Apr 10. Cell Metab. 2014. PMID: 24726383 Free PMC article. Review.
References
- Eur J Biochem. 1995 Apr 15;229(2):558-65 - PubMed
- Biochim Biophys Acta. 1995 Apr 6;1266(1):73-82 - PubMed
- Circulation. 1992 Aug;86(2):598-608 - PubMed
- J Biol Chem. 1994 Jan 28;269(4):2361-4 - PubMed
- Eur J Biochem. 1989 Jan 15;179(1):249-54 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources