Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 - PubMed (original) (raw)
. 2001 Oct 25;413(6858):848-52.
doi: 10.1038/35101607.
G Dougan, K D James, N R Thomson, D Pickard, J Wain, C Churcher, K L Mungall, S D Bentley, M T Holden, M Sebaihia, S Baker, D Basham, K Brooks, T Chillingworth, P Connerton, A Cronin, P Davis, R M Davies, L Dowd, N White, J Farrar, T Feltwell, N Hamlin, A Haque, T T Hien, S Holroyd, K Jagels, A Krogh, T S Larsen, S Leather, S Moule, P O'Gaora, C Parry, M Quail, K Rutherford, M Simmonds, J Skelton, K Stevens, S Whitehead, B G Barrell
Affiliations
- PMID: 11677608
- DOI: 10.1038/35101607
Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18
J Parkhill et al. Nature. 2001.
Abstract
Salmonella enterica serovar Typhi (S. typhi) is the aetiological agent of typhoid fever, a serious invasive bacterial disease of humans with an annual global burden of approximately 16 million cases, leading to 600,000 fatalities. Many S. enterica serovars actively invade the mucosal surface of the intestine but are normally contained in healthy individuals by the local immune defence mechanisms. However, S. typhi has evolved the ability to spread to the deeper tissues of humans, including liver, spleen and bone marrow. Here we have sequenced the 4,809,037-base pair (bp) genome of a S. typhi (CT18) that is resistant to multiple drugs, revealing the presence of hundreds of insertions and deletions compared with the Escherichia coli genome, ranging in size from single genes to large islands. Notably, the genome sequence identifies over two hundred pseudogenes, several corresponding to genes that are known to contribute to virulence in Salmonella typhimurium. This genetic degradation may contribute to the human-restricted host range for S. typhi. CT18 harbours a 218,150-bp multiple-drug-resistance incH1 plasmid (pHCM1), and a 106,516-bp cryptic plasmid (pHCM2), which shows recent common ancestry with a virulence plasmid of Yersinia pestis.
Similar articles
- Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18.
Deng W, Liou SR, Plunkett G 3rd, Mayhew GF, Rose DJ, Burland V, Kodoyianni V, Schwartz DC, Blattner FR. Deng W, et al. J Bacteriol. 2003 Apr;185(7):2330-7. doi: 10.1128/JB.185.7.2330-2337.2003. J Bacteriol. 2003. PMID: 12644504 Free PMC article. - Characterisation and distribution of a cryptic Salmonella typhi plasmid pHCM2.
Kidgell C, Pickard D, Wain J, James K, Diem Nga LT, Diep TS, Levine MM, O'Gaora P, Prentice MB, Parkhill J, Day N, Farrar J, Dougan G. Kidgell C, et al. Plasmid. 2002 May;47(3):159-71. doi: 10.1016/s0147-619x(02)00013-6. Plasmid. 2002. PMID: 12151231 - Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi.
Holt KE, Thomson NR, Wain J, Langridge GC, Hasan R, Bhutta ZA, Quail MA, Norbertczak H, Walker D, Simmonds M, White B, Bason N, Mungall K, Dougan G, Parkhill J. Holt KE, et al. BMC Genomics. 2009 Jan 21;10:36. doi: 10.1186/1471-2164-10-36. BMC Genomics. 2009. PMID: 19159446 Free PMC article. - The genome of Salmonella enterica serovar Typhi.
Baker S, Dougan G. Baker S, et al. Clin Infect Dis. 2007 Jul 15;45 Suppl 1:S29-33. doi: 10.1086/518143. Clin Infect Dis. 2007. PMID: 17582565 Review. - So similar, yet so different: uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and Typhi.
Sabbagh SC, Forest CG, Lepage C, Leclerc JM, Daigle F. Sabbagh SC, et al. FEMS Microbiol Lett. 2010 Apr;305(1):1-13. doi: 10.1111/j.1574-6968.2010.01904.x. Epub 2010 Jan 20. FEMS Microbiol Lett. 2010. PMID: 20146749 Review.
Cited by
- Poor biofilm-forming ability and long-term survival of invasive Salmonella Typhimurium ST313.
Ramachandran G, Aheto K, Shirtliff ME, Tennant SM. Ramachandran G, et al. Pathog Dis. 2016 Jul;74(5):ftw049. doi: 10.1093/femspd/ftw049. Epub 2016 May 23. Pathog Dis. 2016. PMID: 27222487 Free PMC article. - Pathogenic signature of invasive non-typhoidal Salmonella in Africa: implications for vaccine development.
Piccini G, Montomoli E. Piccini G, et al. Hum Vaccin Immunother. 2020 Sep 1;16(9):2056-2071. doi: 10.1080/21645515.2020.1785791. Epub 2020 Jul 21. Hum Vaccin Immunother. 2020. PMID: 32692622 Free PMC article. Review. - Salmonella enterica serovars Typhimurium and Typhi as model organisms: revealing paradigm of host-pathogen interactions.
Garai P, Gnanadhas DP, Chakravortty D. Garai P, et al. Virulence. 2012 Jul 1;3(4):377-88. doi: 10.4161/viru.21087. Epub 2012 Jun 22. Virulence. 2012. PMID: 22722237 Free PMC article. Review. - Now you see me, now you don't: the interaction of Salmonella with innate immune receptors.
Keestra-Gounder AM, Tsolis RM, Bäumler AJ. Keestra-Gounder AM, et al. Nat Rev Microbiol. 2015 Apr;13(4):206-16. doi: 10.1038/nrmicro3428. Epub 2015 Mar 9. Nat Rev Microbiol. 2015. PMID: 25749454 Review. - Horizontal Acquisition of a Multidrug-Resistance Module (R-type ASSuT) Is Responsible for the Monophasic Phenotype in a Widespread Clone of Salmonella Serovar 4,[5],12:i:
García P, Malorny B, Rodicio MR, Stephan R, Hächler H, Guerra B, Lucarelli C. García P, et al. Front Microbiol. 2016 May 10;7:680. doi: 10.3389/fmicb.2016.00680. eCollection 2016. Front Microbiol. 2016. PMID: 27242707 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases