Regulation of human osteocalcin promoter in hormone-independent human prostate cancer cells - PubMed (original) (raw)
. 2002 Jan 25;277(4):2468-76.
doi: 10.1074/jbc.M105947200. Epub 2001 Oct 29.
Affiliations
- PMID: 11684680
- DOI: 10.1074/jbc.M105947200
Free article
Regulation of human osteocalcin promoter in hormone-independent human prostate cancer cells
Fan Yeung et al. J Biol Chem. 2002.
Free article
Abstract
Osteocalcin (OC) is a small (6 kDa) polypeptide whose expression was thought to be limited to mature osteoblasts. The discovery of OC expression in prostate cancer specimens led us to study the regulation of OC gene in androgen-independent metastatic human prostate PC3 cells. An 800-bp human OC (hOC) promoter-luciferase construct exhibited strong basal and vitamin D-induced activity in OC-positive human prostate and osteosarcoma cell lines. Through deletion analysis of the hOC promoter, the functional hierarchy of the cis-acting elements, OSE1, OSE2, and AP-1/VDRE, was established in PC3 cells (OSE1 > AP-1/VDRE > OSE2). By juxtaposing dimers of these 3 cis-elements, we produced a minimal hOC promoter capable of displaying high tissue specific activity in prostate cancer cells. Our study demonstrated three groups of transcription factors, Runx2, JunD/Fra-2, and Sp1, responsible for the high hOC promoter activity in PC3 cells by binding to the OSE2, AP-1/VDRE, and OSE1 elements, respectively. Among the three groups of transcription factors, the expression levels of Runx2 and Fra-2 are higher in the OC-positive PC3 cells and osteoblasts, compared with the OC-negative LNCaP cells. Interestingly, unlike the mouse OC promoter, the OSE1 site in hOC promoter is regulated by members of Sp1 family instead of the osteoblast-specific factor Osf1. The molecular basis for androgen-independent prostate cancer cells behaving like mature osteoblasts may be explained by the interplay and coordination of these transcription factors under the tight regulation of autocrine and paracrine mediators.
Similar articles
- Characterization of Osf1, an osteoblast-specific transcription factor binding to a critical cis-acting element in the mouse Osteocalcin promoters.
Schinke T, Karsenty G. Schinke T, et al. J Biol Chem. 1999 Oct 15;274(42):30182-9. doi: 10.1074/jbc.274.42.30182. J Biol Chem. 1999. PMID: 10514508 - Coordinate occupancy of AP-1 sites in the vitamin D-responsive and CCAAT box elements by Fos-Jun in the osteocalcin gene: model for phenotype suppression of transcription.
Owen TA, Bortell R, Yocum SA, Smock SL, Zhang M, Abate C, Shalhoub V, Aronin N, Wright KL, van Wijnen AJ, et al. Owen TA, et al. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9990-4. doi: 10.1073/pnas.87.24.9990. Proc Natl Acad Sci U S A. 1990. PMID: 2124710 Free PMC article. - Identification of the GATA factor TRPS1 as a repressor of the osteocalcin promoter.
Piscopo DM, Johansen EB, Derynck R. Piscopo DM, et al. J Biol Chem. 2009 Nov 13;284(46):31690-703. doi: 10.1074/jbc.M109.052316. Epub 2009 Sep 15. J Biol Chem. 2009. PMID: 19759027 Free PMC article. - The Runx2 transcription factor plays a key role in the 1alpha,25-dihydroxy Vitamin D3-dependent upregulation of the rat osteocalcin (OC) gene expression in osteoblastic cells.
Paredes R, Arriagada G, Cruzat F, Olate J, Van Wijnen A, Lian J, Stein G, Stein J, Montecino M. Paredes R, et al. J Steroid Biochem Mol Biol. 2004 May;89-90(1-5):269-71. doi: 10.1016/j.jsbmb.2004.03.076. J Steroid Biochem Mol Biol. 2004. PMID: 15225783 Review. - Human prostate cancer progression models and therapeutic intervention.
Chung LW, Kao C, Sikes RA, Zhau HE. Chung LW, et al. Hinyokika Kiyo. 1997 Nov;43(11):815-20. Hinyokika Kiyo. 1997. PMID: 9436028 Review.
Cited by
- Kinship of conditionally immortalized cells derived from fetal bone to human bone-derived mesenchymal stroma cells.
Marozin S, Simon-Nobbe B, Irausek S, Chung LWK, Lepperdinger G. Marozin S, et al. Sci Rep. 2021 May 25;11(1):10933. doi: 10.1038/s41598-021-90161-2. Sci Rep. 2021. PMID: 34035368 Free PMC article. - Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis.
Baniwal SK, Khalid O, Gabet Y, Shah RR, Purcell DJ, Mav D, Kohn-Gabet AE, Shi Y, Coetzee GA, Frenkel B. Baniwal SK, et al. Mol Cancer. 2010 Sep 23;9:258. doi: 10.1186/1476-4598-9-258. Mol Cancer. 2010. PMID: 20863401 Free PMC article. - PERK-eIF2α-ATF4 signaling contributes to osteogenic differentiation of periodontal ligament stem cells.
Yang S, Hu L, Wang C, Wei F. Yang S, et al. J Mol Histol. 2020 Apr;51(2):125-135. doi: 10.1007/s10735-020-09863-y. Epub 2020 Mar 2. J Mol Histol. 2020. PMID: 32124153 - FOXO1 inhibits Runx2 transcriptional activity and prostate cancer cell migration and invasion.
Zhang H, Pan Y, Zheng L, Choe C, Lindgren B, Jensen ED, Westendorf JJ, Cheng L, Huang H. Zhang H, et al. Cancer Res. 2011 May 1;71(9):3257-67. doi: 10.1158/0008-5472.CAN-10-2603. Epub 2011 Apr 19. Cancer Res. 2011. PMID: 21505104 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical