The C-terminal domain of yeast Ero1p mediates membrane localization and is essential for function - PubMed (original) (raw)
The C-terminal domain of yeast Ero1p mediates membrane localization and is essential for function
M Pagani et al. FEBS Lett. 2001.
Free article
Abstract
In eukaryotes, members of the Ero1 family control oxidative protein folding in the endoplasmic reticulum (ER). Yeast Ero1p is tightly associated with the ER membrane, despite cleavage of the leader peptide, the only hydrophobic sequence that could mediate lipid insertion. In contrast, human Ero1-Lalpha and a yeast mutant (Ero1pDeltaC) lacking the 127 C-terminal amino acids are soluble when expressed in yeast. Neither Ero1-Lalpha nor Ero1pDeltaC complements an ERO1 disrupted strain. Appending the yeast C-terminal tail to human Ero1-Lalpha restores membrane association and allows growth of ERO1 disrupted cells. Therefore, the tail of Ero1p mediates membrane association and is crucial for function.
Similar articles
- Oxidative protein folding in eukaryotes: mechanisms and consequences.
Tu BP, Weissman JS. Tu BP, et al. J Cell Biol. 2004 Feb 2;164(3):341-6. doi: 10.1083/jcb.200311055. J Cell Biol. 2004. PMID: 14757749 Free PMC article. Review. - Two pairs of conserved cysteines are required for the oxidative activity of Ero1p in protein disulfide bond formation in the endoplasmic reticulum.
Frand AR, Kaiser CA. Frand AR, et al. Mol Biol Cell. 2000 Sep;11(9):2833-43. doi: 10.1091/mbc.11.9.2833. Mol Biol Cell. 2000. PMID: 10982384 Free PMC article. - Oxidative activity of yeast Ero1p on protein disulfide isomerase and related oxidoreductases of the endoplasmic reticulum.
Vitu E, Kim S, Sevier CS, Lutzky O, Heldman N, Bentzur M, Unger T, Yona M, Kaiser CA, Fass D. Vitu E, et al. J Biol Chem. 2010 Jun 11;285(24):18155-65. doi: 10.1074/jbc.M109.064931. Epub 2010 Mar 26. J Biol Chem. 2010. PMID: 20348090 Free PMC article. - Novel Roles of the Non-catalytic Elements of Yeast Protein-disulfide Isomerase in Its Interplay with Endoplasmic Reticulum Oxidoreductin 1.
Niu Y, Zhang L, Yu J, Wang CC, Wang L. Niu Y, et al. J Biol Chem. 2016 Apr 8;291(15):8283-94. doi: 10.1074/jbc.M115.694257. Epub 2016 Feb 4. J Biol Chem. 2016. PMID: 26846856 Free PMC article. - Ero1 and redox homeostasis in the endoplasmic reticulum.
Sevier CS, Kaiser CA. Sevier CS, et al. Biochim Biophys Acta. 2008 Apr;1783(4):549-56. doi: 10.1016/j.bbamcr.2007.12.011. Epub 2007 Dec 23. Biochim Biophys Acta. 2008. PMID: 18191641 Review.
Cited by
- The oxidative protein folding machinery in plant cells.
Aller I, Meyer AJ. Aller I, et al. Protoplasma. 2013 Aug;250(4):799-816. doi: 10.1007/s00709-012-0463-x. Epub 2012 Oct 23. Protoplasma. 2013. PMID: 23090240 Review. - Oxidative protein folding: selective pressure for prolamin evolution in rice.
Onda Y, Kawagoe Y. Onda Y, et al. Plant Signal Behav. 2011 Dec;6(12):1966-72. doi: 10.4161/psb.6.12.17967. Plant Signal Behav. 2011. PMID: 22112460 Free PMC article. Review. - ER membrane-localized oxidoreductase Ero1 is required for disulfide bond formation in the rice endosperm.
Onda Y, Kumamaru T, Kawagoe Y. Onda Y, et al. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14156-61. doi: 10.1073/pnas.0904429106. Epub 2009 Aug 6. Proc Natl Acad Sci U S A. 2009. PMID: 19666483 Free PMC article. - Oxidative protein folding in eukaryotes: mechanisms and consequences.
Tu BP, Weissman JS. Tu BP, et al. J Cell Biol. 2004 Feb 2;164(3):341-6. doi: 10.1083/jcb.200311055. J Cell Biol. 2004. PMID: 14757749 Free PMC article. Review. - Biochemical analysis of Komagataella phaffii oxidative folding proposes novel regulatory mechanisms of disulfide bond formation in yeast.
Palma A, Rettenbacher LA, Moilanen A, Saaranen M, Pacheco-Martinez C, Gasser B, Ruddock L. Palma A, et al. Sci Rep. 2023 Aug 31;13(1):14298. doi: 10.1038/s41598-023-41375-z. Sci Rep. 2023. PMID: 37652992 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases