Spintronics: a spin-based electronics vision for the future - PubMed (original) (raw)
. 2001 Nov 16;294(5546):1488-95.
doi: 10.1126/science.1065389.
Affiliations
- PMID: 11711666
- DOI: 10.1126/science.1065389
Spintronics: a spin-based electronics vision for the future
S A Wolf et al. Science. 2001.
Abstract
This review describes a new paradigm of electronics based on the spin degree of freedom of the electron. Either adding the spin degree of freedom to conventional charge-based electronic devices or using the spin alone has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices. To successfully incorporate spins into existing semiconductor technology, one has to resolve technical issues such as efficient injection, transport, control and manipulation, and detection of spin polarization as well as spin-polarized currents. Recent advances in new materials engineering hold the promise of realizing spintronic devices in the near future. We review the current state of the spin-based devices, efforts in new materials fabrication, issues in spin transport, and optical spin manipulation.
Similar articles
- Direct electronic measurement of the spin Hall effect.
Valenzuela SO, Tinkham M. Valenzuela SO, et al. Nature. 2006 Jul 13;442(7099):176-9. doi: 10.1038/nature04937. Nature. 2006. PMID: 16838016 - Half-metallic graphene nanoribbons.
Son YW, Cohen ML, Louie SG. Son YW, et al. Nature. 2006 Nov 16;444(7117):347-9. doi: 10.1038/nature05180. Nature. 2006. PMID: 17108960 - Power dissipation in spintronic devices: a general perspective.
Bandyopadhyay S. Bandyopadhyay S. J Nanosci Nanotechnol. 2007 Jan;7(1):168-80. J Nanosci Nanotechnol. 2007. PMID: 17455482 Review. - Electronic measurement and control of spin transport in silicon.
Appelbaum I, Huang B, Monsma DJ. Appelbaum I, et al. Nature. 2007 May 17;447(7142):295-8. doi: 10.1038/nature05803. Nature. 2007. PMID: 17507978 - Electron spin for classical information processing: a brief survey of spin-based logic devices, gates and circuits.
Bandyopadhyay S, Cahay M. Bandyopadhyay S, et al. Nanotechnology. 2009 Oct 14;20(41):412001. doi: 10.1088/0957-4484/20/41/412001. Epub 2009 Sep 16. Nanotechnology. 2009. PMID: 19755729 Review.
Cited by
- The role of a tantalum interlayer in enhancing the properties of Fe3O4 thin films.
Ngo HD, Truong VDT, Le VQ, Pham HP, Pham TKH. Ngo HD, et al. Beilstein J Nanotechnol. 2024 Oct 14;15:1253-1259. doi: 10.3762/bjnano.15.101. eCollection 2024. Beilstein J Nanotechnol. 2024. PMID: 39445166 Free PMC article. - Electronic, magnetic, optical and thermoelectric properties of co-doped Sn1-2_x_ Mn x A x O2 (A = Mo, Tc): a first principles insight.
Laghzaoui S, Lamrani AF, Laamara RA, Maskar E, Tuxtamishev BQ, Laref A, Rai DP. Laghzaoui S, et al. RSC Adv. 2022 Oct 6;12(44):28451-28462. doi: 10.1039/d2ra04499d. eCollection 2022 Oct 4. RSC Adv. 2022. PMID: 36320502 Free PMC article. - Electrodeposited Heusler Alloys-Based Nanowires for Shape Memory and Magnetocaloric Applications.
Varga M, Galdun L, Vronka M, Diko P, Heczko O, Varga R. Varga M, et al. Materials (Basel). 2024 Jan 13;17(2):407. doi: 10.3390/ma17020407. Materials (Basel). 2024. PMID: 38255575 Free PMC article. - Solar-Powered Switch of Antiferromagnetism/Ferromagnetism in Flexible Spintronics.
Wang C, Du Y, Zhao Y, He Z, Wang S, Zhang Y, Jiang Y, Du Y, Wu J, Jiang Z, Liu M. Wang C, et al. Nanomaterials (Basel). 2023 Dec 17;13(24):3158. doi: 10.3390/nano13243158. Nanomaterials (Basel). 2023. PMID: 38133055 Free PMC article. - Designing Organic Spin-Gapless Semiconductors via Molecular Adsorption on C4N3 Monolayer.
Zhao D, Tang X, Xing W, Zhang Y, Gao X, Zhang M, Xie Z, Yan X, Ju L. Zhao D, et al. Molecules. 2024 Jul 1;29(13):3138. doi: 10.3390/molecules29133138. Molecules. 2024. PMID: 38999089 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources