Novel vacuolar H+-ATPase complexes resulting from overproduction of Vma5p and Vma13p - PubMed (original) (raw)
. 2002 Jan 25;277(4):2716-24.
doi: 10.1074/jbc.M107777200. Epub 2001 Nov 20.
Affiliations
- PMID: 11717306
- DOI: 10.1074/jbc.M107777200
Free article
Novel vacuolar H+-ATPase complexes resulting from overproduction of Vma5p and Vma13p
Kelly Keenan Curtis et al. J Biol Chem. 2002.
Free article
Abstract
The vacuolar H(+)-ATPase (V-ATPase) is a multisubunit complex composed of two sectors: V(1), a peripheral membrane sector responsible for ATP hydrolysis, and V(0), an integral membrane sector that forms a proton pore. Vma5p and Vma13p are V(1) sector subunits that have been implicated in the structural and functional coupling of the V-ATPase. Cells overexpressing Vma5p and Vma13p demonstrate a classic Vma(-) growth phenotype. Closer biochemical examination of Vma13p-overproducing strains revealed a functionally uncoupled V-ATPase in vacuolar vesicles. The ATP hydrolysis rate was 72% of the wild-type rate; but there was no proton translocation, and two V(1) subunits (Vma4p and Vma8p) were present at lower levels. Vma5p overproduction moderately affected both V-ATPase activity and proton translocation without affecting enzyme assembly. High level overexpression of Vma5p and Vma13p was lethal even in wild-type cells. In the absence of an intact V(0) sector, overproduction of Vma5p and Vma13p had a more detrimental effect on growth than their deletion. Overproduced Vma5p associated with cytosolic V(1) complexes; this association may cause the lethality.
Similar articles
- Defined sites of interaction between subunits E (Vma4p), C (Vma5p), and G (Vma10p) within the stator structure of the vacuolar H+-ATPase.
Jones RP, Durose LJ, Findlay JB, Harrison MA. Jones RP, et al. Biochemistry. 2005 Mar 15;44(10):3933-41. doi: 10.1021/bi048402x. Biochemistry. 2005. PMID: 15751969 - Functional characterization of the N-terminal domain of subunit H (Vma13p) of the yeast vacuolar ATPase.
Flannery AR, Stevens TH. Flannery AR, et al. J Biol Chem. 2008 Oct 24;283(43):29099-108. doi: 10.1074/jbc.M803280200. Epub 2008 Aug 16. J Biol Chem. 2008. PMID: 18708638 Free PMC article. - The H subunit (Vma13p) of the yeast V-ATPase inhibits the ATPase activity of cytosolic V1 complexes.
Parra KJ, Keenan KL, Kane PM. Parra KJ, et al. J Biol Chem. 2000 Jul 14;275(28):21761-7. doi: 10.1074/jbc.M002305200. J Biol Chem. 2000. PMID: 10781598 - Structure and function of the yeast vacuolar membrane proton ATPase.
Anraku Y, Umemoto N, Hirata R, Wada Y. Anraku Y, et al. J Bioenerg Biomembr. 1989 Oct;21(5):589-603. doi: 10.1007/BF00808115. J Bioenerg Biomembr. 1989. PMID: 2531738 Review. - Structural features and nucleotide-binding capability of the C subunit are integral to the regulation of the eukaryotic V1Vo ATPases.
Grüber G. Grüber G. Biochem Soc Trans. 2005 Aug;33(Pt 4):883-5. doi: 10.1042/BST0330883. Biochem Soc Trans. 2005. PMID: 16042619 Review.
Cited by
- A family of genes clustered at the Triplo-lethal locus of Drosophila melanogaster has an unusual evolutionary history and significant synteny with Anopheles gambiae.
Dorer DR, Rudnick JA, Moriyama EN, Christensen AC. Dorer DR, et al. Genetics. 2003 Oct;165(2):613-21. doi: 10.1093/genetics/165.2.613. Genetics. 2003. PMID: 14573474 Free PMC article. - Assembly and regulation of the yeast vacuolar H+-ATPase.
Kane PM, Smardon AM. Kane PM, et al. J Bioenerg Biomembr. 2003 Aug;35(4):313-21. doi: 10.1023/a:1025724814656. J Bioenerg Biomembr. 2003. PMID: 14635777 Review. - MdMYB1 Regulates Anthocyanin and Malate Accumulation by Directly Facilitating Their Transport into Vacuoles in Apples.
Hu DG, Sun CH, Ma QJ, You CX, Cheng L, Hao YJ. Hu DG, et al. Plant Physiol. 2016 Mar;170(3):1315-30. doi: 10.1104/pp.15.01333. Epub 2015 Dec 4. Plant Physiol. 2016. PMID: 26637549 Free PMC article. - Genome-wide analysis reveals the vacuolar pH-stat of Saccharomyces cerevisiae.
Brett CL, Kallay L, Hua Z, Green R, Chyou A, Zhang Y, Graham TR, Donowitz M, Rao R. Brett CL, et al. PLoS One. 2011 Mar 14;6(3):e17619. doi: 10.1371/journal.pone.0017619. PLoS One. 2011. PMID: 21423800 Free PMC article. - Genome-wide identification for genes involved in sodium dodecyl sulfate toxicity in Saccharomyces cerevisiae.
Cao C, Cao Z, Yu P, Zhao Y. Cao C, et al. BMC Microbiol. 2020 Feb 17;20(1):34. doi: 10.1186/s12866-020-1721-2. BMC Microbiol. 2020. PMID: 32066383 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases