Total internal reflection fluorescence microscopy in cell biology - PubMed (original) (raw)
Review
Total internal reflection fluorescence microscopy in cell biology
D Axelrod. Traffic. 2001 Nov.
Free article
Abstract
Key events in cellular trafficking occur at the cell surface, and it is desirable to visualize these events without interference from other regions deeper within. This review describes a microscopy technique based on total internal reflection fluorescence which is well suited for optical sectioning at cell-substrate regions with an unusually thin region of fluorescence excitation. The technique has many other applications as well, most notably for studying biochemical kinetics and single biomolecule dynamics at surfaces. A brief summary of these applications is provided, followed by presentations of the physical basis for the technique and the various ways to implement total internal reflection fluorescence in a standard fluorescence microscope.
Similar articles
- Imaging a target of Ca2+ signalling: dense core granule exocytosis viewed by total internal reflection fluorescence microscopy.
Ravier MA, Tsuboi T, Rutter GA. Ravier MA, et al. Methods. 2008 Nov;46(3):233-8. doi: 10.1016/j.ymeth.2008.09.016. Epub 2008 Oct 12. Methods. 2008. PMID: 18854212 Free PMC article. - Live-Cell Total Internal Reflection Fluorescence (TIRF) Microscopy to Investigate Protein Internalization Dynamics.
Rao TC, Nawara TJ, Mattheyses AL. Rao TC, et al. Methods Mol Biol. 2022;2438:45-58. doi: 10.1007/978-1-0716-2035-9_3. Methods Mol Biol. 2022. PMID: 35147934 - The physical basis of total internal reflection fluorescence (TIRF) microscopy and its cellular applications.
Poulter NS, Pitkeathly WT, Smith PJ, Rappoport JZ. Poulter NS, et al. Methods Mol Biol. 2015;1251:1-23. doi: 10.1007/978-1-4939-2080-8_1. Methods Mol Biol. 2015. PMID: 25391791 Review. - Chapter 7: Total internal reflection fluorescence microscopy.
Axelrod D. Axelrod D. Methods Cell Biol. 2008;89:169-221. doi: 10.1016/S0091-679X(08)00607-9. Methods Cell Biol. 2008. PMID: 19118676 - Visualizing membrane trafficking using total internal reflection fluorescence microscopy.
Beaumont V. Beaumont V. Biochem Soc Trans. 2003 Aug;31(Pt 4):819-23. doi: 10.1042/bst0310819. Biochem Soc Trans. 2003. PMID: 12887313 Review.
Cited by
- Oil-sealed femtoliter fiber-optic arrays for single molecule analysis.
Zhang H, Nie S, Etson CM, Wang RM, Walt DR. Zhang H, et al. Lab Chip. 2012 Jun 21;12(12):2229-39. doi: 10.1039/c2lc21113k. Epub 2012 Feb 6. Lab Chip. 2012. PMID: 22311152 Free PMC article. - Algorithm for semi-automatic detection of insulin granule exocytosis in human pancreatic β-cells.
Makam AA, Dubey A, Maharana S, Gandasi NR. Makam AA, et al. Heliyon. 2024 Sep 27;10(19):e38307. doi: 10.1016/j.heliyon.2024.e38307. eCollection 2024 Oct 15. Heliyon. 2024. PMID: 39421365 Free PMC article. - Detectors for single-molecule fluorescence imaging and spectroscopy.
Michalet X, Siegmund OH, Vallerga JV, Jelinsky P, Millaud JE, Weiss S. Michalet X, et al. J Mod Opt. 2007 Jan 1;54(2-3):239. doi: 10.1080/09500340600769067. J Mod Opt. 2007. PMID: 20157633 Free PMC article. - Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane.
Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE. Stein AT, et al. J Gen Physiol. 2006 Nov;128(5):509-22. doi: 10.1085/jgp.200609576. J Gen Physiol. 2006. PMID: 17074976 Free PMC article. - Vesicle fusion probability is determined by the specific interactions of munc18.
Smyth AM, Rickman C, Duncan RR. Smyth AM, et al. J Biol Chem. 2010 Dec 3;285(49):38141-8. doi: 10.1074/jbc.M110.164038. Epub 2010 Aug 26. J Biol Chem. 2010. PMID: 20801887 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources