Total internal reflection fluorescence microscopy in cell biology - PubMed (original) (raw)
Review
Total internal reflection fluorescence microscopy in cell biology
D Axelrod. Traffic. 2001 Nov.
Free article
Abstract
Key events in cellular trafficking occur at the cell surface, and it is desirable to visualize these events without interference from other regions deeper within. This review describes a microscopy technique based on total internal reflection fluorescence which is well suited for optical sectioning at cell-substrate regions with an unusually thin region of fluorescence excitation. The technique has many other applications as well, most notably for studying biochemical kinetics and single biomolecule dynamics at surfaces. A brief summary of these applications is provided, followed by presentations of the physical basis for the technique and the various ways to implement total internal reflection fluorescence in a standard fluorescence microscope.
Similar articles
- Imaging a target of Ca2+ signalling: dense core granule exocytosis viewed by total internal reflection fluorescence microscopy.
Ravier MA, Tsuboi T, Rutter GA. Ravier MA, et al. Methods. 2008 Nov;46(3):233-8. doi: 10.1016/j.ymeth.2008.09.016. Epub 2008 Oct 12. Methods. 2008. PMID: 18854212 Free PMC article. - Live-Cell Total Internal Reflection Fluorescence (TIRF) Microscopy to Investigate Protein Internalization Dynamics.
Rao TC, Nawara TJ, Mattheyses AL. Rao TC, et al. Methods Mol Biol. 2022;2438:45-58. doi: 10.1007/978-1-0716-2035-9_3. Methods Mol Biol. 2022. PMID: 35147934 - The physical basis of total internal reflection fluorescence (TIRF) microscopy and its cellular applications.
Poulter NS, Pitkeathly WT, Smith PJ, Rappoport JZ. Poulter NS, et al. Methods Mol Biol. 2015;1251:1-23. doi: 10.1007/978-1-4939-2080-8_1. Methods Mol Biol. 2015. PMID: 25391791 Review. - Chapter 7: Total internal reflection fluorescence microscopy.
Axelrod D. Axelrod D. Methods Cell Biol. 2008;89:169-221. doi: 10.1016/S0091-679X(08)00607-9. Methods Cell Biol. 2008. PMID: 19118676 - Visualizing membrane trafficking using total internal reflection fluorescence microscopy.
Beaumont V. Beaumont V. Biochem Soc Trans. 2003 Aug;31(Pt 4):819-23. doi: 10.1042/bst0310819. Biochem Soc Trans. 2003. PMID: 12887313 Review.
Cited by
- Tropomyosin Isoforms Segregate into Distinct Clusters on Single Actin Filaments.
Obeidy P, Sobey T, Nicovich PR, Coster ACF, Pandzic E. Obeidy P, et al. Biomolecules. 2024 Sep 30;14(10):1240. doi: 10.3390/biom14101240. Biomolecules. 2024. PMID: 39456172 Free PMC article. - Algorithm for semi-automatic detection of insulin granule exocytosis in human pancreatic β-cells.
Makam AA, Dubey A, Maharana S, Gandasi NR. Makam AA, et al. Heliyon. 2024 Sep 27;10(19):e38307. doi: 10.1016/j.heliyon.2024.e38307. eCollection 2024 Oct 15. Heliyon. 2024. PMID: 39421365 Free PMC article. - Differential Regulation of Hemichannels and Gap Junction Channels by RhoA GTPase and Actin Cytoskeleton: A Comparative Analysis of Cx43 and Cx26.
Jara O, Maripillán J, Momboisse F, Cárdenas AM, García IE, Martínez AD. Jara O, et al. Int J Mol Sci. 2024 Jun 30;25(13):7246. doi: 10.3390/ijms25137246. Int J Mol Sci. 2024. PMID: 39000353 Free PMC article. - IgG and IgM differentiation in a particle-based agglutination assay by control over antigen surface density.
Gandhi S, Shaulli X, Fock J, Scheffold F, Marie R. Gandhi S, et al. APL Bioeng. 2024 Jun 13;8(2):026124. doi: 10.1063/5.0196224. eCollection 2024 Jun. APL Bioeng. 2024. PMID: 38894961 Free PMC article. - Multimodal illumination platform for 3D single-molecule super-resolution imaging throughout mammalian cells.
Nelson T, Vargas-Hernández S, Freire M, Cheng S, Gustavsson AK. Nelson T, et al. Biomed Opt Express. 2024 Apr 16;15(5):3050-3063. doi: 10.1364/BOE.521362. eCollection 2024 May 1. Biomed Opt Express. 2024. PMID: 38855669 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources