Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils - PubMed (original) (raw)
Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils
Andre Levchenko et al. Biophys J. 2002 Jan.
Abstract
Eukaryotic cells can detect shallow gradients of chemoattractants with exquisite precision and respond quickly to changes in the gradient steepness and direction. Here, we describe a set of models explaining both adaptation to uniform increases in chemoattractant and persistent signaling in response to gradients. We demonstrate that one of these models can be mapped directly onto the biochemical signal-transduction pathways underlying gradient sensing in amoebae and neutrophils. According to this scheme, a locally acting activator (PI3-kinase) and a globally acting inactivator (PTEN or a similar phosphatase) are coordinately controlled by the G-protein activation. This signaling system adapts perfectly to spatially homogeneous changes in the chemoattractant. In chemoattractant gradients, an imbalance between the action of the activator and the inactivator results in a spatially oriented persistent signaling, amplified by a substrate supply-based positive feedback acting through small G-proteins. The amplification is activated only in a continuous presence of the external signal gradient, thus providing the mechanism for sensitivity to gradient alterations. Finally, based on this mapping, we make predictions concerning the dynamics of signaling. We propose that the underlying principles of perfect adaptation and substrate supply-based positive feedback will be found in the sensory systems of other chemotactic cell types.
Similar articles
- Mechanisms of gradient detection: a comparison of axon pathfinding with eukaryotic cell migration.
von Philipsborn A, Bastmeyer M. von Philipsborn A, et al. Int Rev Cytol. 2007;263:1-62. doi: 10.1016/S0074-7696(07)63001-0. Int Rev Cytol. 2007. PMID: 17725964 Review. - An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients.
Heit B, Tavener S, Raharjo E, Kubes P. Heit B, et al. J Cell Biol. 2002 Oct 14;159(1):91-102. doi: 10.1083/jcb.200202114. Epub 2002 Oct 7. J Cell Biol. 2002. PMID: 12370241 Free PMC article. - Quantitative elucidation of a distinct spatial gradient-sensing mechanism in fibroblasts.
Schneider IC, Haugh JM. Schneider IC, et al. J Cell Biol. 2005 Dec 5;171(5):883-92. doi: 10.1083/jcb.200509028. Epub 2005 Nov 28. J Cell Biol. 2005. PMID: 16314431 Free PMC article. - Bias in the gradient-sensing response of chemotactic cells.
Skupsky R, McCann C, Nossal R, Losert W. Skupsky R, et al. J Theor Biol. 2007 Jul 21;247(2):242-58. doi: 10.1016/j.jtbi.2007.02.016. Epub 2007 Mar 6. J Theor Biol. 2007. PMID: 17462672 Free PMC article. - The molecular genetics of chemotaxis: sensing and responding to chemoattractant gradients.
Firtel RA, Chung CY. Firtel RA, et al. Bioessays. 2000 Jul;22(7):603-15. doi: 10.1002/1521-1878(200007)22:7<603::AID-BIES3>3.0.CO;2-#. Bioessays. 2000. PMID: 10878573 Review.
Cited by
- Biased excitable networks: how cells direct motion in response to gradients.
Iglesias PA, Devreotes PN. Iglesias PA, et al. Curr Opin Cell Biol. 2012 Apr;24(2):245-53. doi: 10.1016/j.ceb.2011.11.009. Epub 2011 Dec 10. Curr Opin Cell Biol. 2012. PMID: 22154943 Free PMC article. Review. - ASYMPTOTIC AND BIFURCATION ANALYSIS OF WAVE-PINNING IN A REACTION-DIFFUSION MODEL FOR CELL POLARIZATION.
Mori Y, Jilkine A, Edelstein-Keshet L. Mori Y, et al. SIAM J Appl Math. 2011;71(4):1401-1427. doi: 10.1137/10079118X. SIAM J Appl Math. 2011. PMID: 22171122 Free PMC article. - Cooperative adaptive responses in gene regulatory networks with many degrees of freedom.
Inoue M, Kaneko K. Inoue M, et al. PLoS Comput Biol. 2013 Apr;9(4):e1003001. doi: 10.1371/journal.pcbi.1003001. Epub 2013 Apr 4. PLoS Comput Biol. 2013. PMID: 23592959 Free PMC article. - Modelling the effect of cell motility on mixing and invasion in epithelial monolayers.
Alsubaie FS, Neufeld Z. Alsubaie FS, et al. J Biol Phys. 2024 Dec;50(3-4):291-306. doi: 10.1007/s10867-024-09660-8. Epub 2024 Jul 20. J Biol Phys. 2024. PMID: 39031299 Free PMC article. - A mathematical model of GTPase pattern formation during single-cell wound repair.
Holmes WR, Golding AE, Bement WM, Edelstein-Keshet L. Holmes WR, et al. Interface Focus. 2016 Oct 6;6(5):20160032. doi: 10.1098/rsfs.2016.0032. Interface Focus. 2016. PMID: 27708759 Free PMC article. Review.
References
- Biochem J. 1999 Dec 1;344 Pt 2:511-8 - PubMed
- J Cell Sci. 1999 Sep;112 ( Pt 17):2867-74 - PubMed
- Science. 2000 Feb 11;287(5455):1037-40 - PubMed
- J Cell Sci. 2000 Apr;113 ( Pt 7):1287-98 - PubMed
- Cell. 2000 Mar 17;100(6):603-6 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials