A genomic view of alternative splicing - PubMed (original) (raw)
A genomic view of alternative splicing
Barmak Modrek et al. Nat Genet. 2002 Jan.
Abstract
Recent genome-wide analyses of alternative splicing indicate that 40-60% of human genes have alternative splice forms, suggesting that alternative splicing is one of the most significant components of the functional complexity of the human genome. Here we review these recent results from bioinformatics studies, assess their reliability and consider the impact of alternative splicing on biological functions. Although the 'big picture' of alternative splicing that is emerging from genomics is exciting, there are many challenges. High-throughput experimental verification of alternative splice forms, functional characterization, and regulation of alternative splicing are key directions for research. We recommend a community-based effort to discover and characterize alternative splice forms comprehensively throughout the human genome.
Similar articles
- ASAP: the Alternative Splicing Annotation Project.
Lee C, Atanelov L, Modrek B, Xing Y. Lee C, et al. Nucleic Acids Res. 2003 Jan 1;31(1):101-5. doi: 10.1093/nar/gkg029. Nucleic Acids Res. 2003. PMID: 12519958 Free PMC article. - Bioinformatics analysis of alternative splicing.
Lee C, Wang Q. Lee C, et al. Brief Bioinform. 2005 Mar;6(1):23-33. doi: 10.1093/bib/6.1.23. Brief Bioinform. 2005. PMID: 15826354 Review. - Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology.
Black DL. Black DL. Cell. 2000 Oct 27;103(3):367-70. doi: 10.1016/s0092-8674(00)00128-8. Cell. 2000. PMID: 11081623 Review. No abstract available. - Bioinformatics detection of alternative splicing.
Kim N, Lee C. Kim N, et al. Methods Mol Biol. 2008;452:179-97. doi: 10.1007/978-1-60327-159-2_9. Methods Mol Biol. 2008. PMID: 18566765 Review. - Genome-wide detection of tissue-specific alternative splicing in the human transcriptome.
Xu Q, Modrek B, Lee C. Xu Q, et al. Nucleic Acids Res. 2002 Sep 1;30(17):3754-66. doi: 10.1093/nar/gkf492. Nucleic Acids Res. 2002. PMID: 12202761 Free PMC article.
Cited by
- Subgroup-specific alternative splicing in medulloblastoma.
Dubuc AM, Morrissy AS, Kloosterhof NK, Northcott PA, Yu EP, Shih D, Peacock J, Grajkowska W, van Meter T, Eberhart CG, Pfister S, Marra MA, Weiss WA, Scherer SW, Rutka JT, French PJ, Taylor MD. Dubuc AM, et al. Acta Neuropathol. 2012 Apr;123(4):485-499. doi: 10.1007/s00401-012-0959-7. Epub 2012 Feb 23. Acta Neuropathol. 2012. PMID: 22358458 Free PMC article. - Comprehensive Transcriptome Profiling Reveals Long Noncoding RNA Expression and Alternative Splicing Regulation during Fruit Development and Ripening in Kiwifruit (Actinidia chinensis).
Tang W, Zheng Y, Dong J, Yu J, Yue J, Liu F, Guo X, Huang S, Wisniewski M, Sun J, Niu X, Ding J, Liu J, Fei Z, Liu Y. Tang W, et al. Front Plant Sci. 2016 Mar 29;7:335. doi: 10.3389/fpls.2016.00335. eCollection 2016. Front Plant Sci. 2016. PMID: 27594858 Free PMC article. - X:Map: annotation and visualization of genome structure for Affymetrix exon array analysis.
Yates T, Okoniewski MJ, Miller CJ. Yates T, et al. Nucleic Acids Res. 2008 Jan;36(Database issue):D780-6. doi: 10.1093/nar/gkm779. Epub 2007 Oct 11. Nucleic Acids Res. 2008. PMID: 17932061 Free PMC article. - Regulation of the MID1 protein function is fine-tuned by a complex pattern of alternative splicing.
Winter J, Lehmann T, Krauss S, Trockenbacher A, Kijas Z, Foerster J, Suckow V, Yaspo ML, Kulozik A, Kalscheuer V, Schneider R, Schweiger S. Winter J, et al. Hum Genet. 2004 May;114(6):541-52. doi: 10.1007/s00439-004-1114-x. Epub 2004 Mar 31. Hum Genet. 2004. PMID: 15057556 - Discovery of novel alternatively spliced C. elegans transcripts by computational analysis of SAGE data.
Ruzanov P, Jones SJ, Riddle DL. Ruzanov P, et al. BMC Genomics. 2007 Nov 30;8:447. doi: 10.1186/1471-2164-8-447. BMC Genomics. 2007. PMID: 18053145 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources