Molecular mechanisms of chaperonin GroEL-GroES function - PubMed (original) (raw)
. 2002 Jan 15;41(2):491-501.
doi: 10.1021/bi011393x.
Affiliations
- PMID: 11781087
- DOI: 10.1021/bi011393x
Molecular mechanisms of chaperonin GroEL-GroES function
O Keskin et al. Biochemistry. 2002.
Abstract
The dynamics of the GroEL-GroES complex is investigated with a coarse-grained model. This model is one in which single-residue points are connected to other such points, which are nearby, by identical springs, forming a network of interactions. The nature of the most important (slowest) normal modes reveals a wide variety of motions uniquely dependent upon the central cavity of the structure, including opposed torsional rotation of the two GroEL rings accompanied by the alternating compression and expansion of the GroES cap binding region, bending, shear, opposed radial breathing of the cis and trans rings, and stretching and contraction along the protein assembly's long axis. The intermediate domains of the subunits are bifunctional due to the presence of two hinges, which are alternatively activated or frozen by an ATP-dependent mechanism. ATP binding stabilizes a relatively open conformation (with respect to the central cavity) and hinders the motion of the hinge site connecting the intermediate and equatorial domains, while enhancing the flexibility of the second hinge that sets in motion the apical domains. The relative flexibilities of the hinges are reversed in the nucleotide-free form. Cooperative cross-correlations between subunits provide information about the mechanism of action of the protein. The mechanical motions driven by the different modes provide variable binding surfaces and variable sized cavities in the interior to enable accommodation of a broad range of protein substrates. These modes of motion could be used to manipulate the substrate's conformations.
Similar articles
- Gly192 at hinge 2 site in the chaperonin GroEL plays a pivotal role in the dynamic apical domain movement that leads to GroES binding and efficient encapsulation of substrate proteins.
Machida K, Fujiwara R, Tanaka T, Sakane I, Hongo K, Mizobata T, Kawata Y. Machida K, et al. Biochim Biophys Acta. 2009 Sep;1794(9):1344-54. doi: 10.1016/j.bbapap.2008.12.003. Epub 2008 Dec 24. Biochim Biophys Acta. 2009. PMID: 19130907 - Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate.
Taguchi H. Taguchi H. J Mol Biol. 2015 Sep 11;427(18):2912-8. doi: 10.1016/j.jmb.2015.04.007. Epub 2015 Apr 18. J Mol Biol. 2015. PMID: 25900372 Review. - Substrate polypeptide presents a load on the apical domains of the chaperonin GroEL.
Motojima F, Chaudhry C, Fenton WA, Farr GW, Horwich AL. Motojima F, et al. Proc Natl Acad Sci U S A. 2004 Oct 19;101(42):15005-12. doi: 10.1073/pnas.0406132101. Epub 2004 Oct 12. Proc Natl Acad Sci U S A. 2004. PMID: 15479763 Free PMC article. - The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex.
Xu Z, Horwich AL, Sigler PB. Xu Z, et al. Nature. 1997 Aug 21;388(6644):741-50. doi: 10.1038/41944. Nature. 1997. PMID: 9285585 - GroEL/GroES: structure and function of a two-stroke folding machine.
Xu Z, Sigler PB. Xu Z, et al. J Struct Biol. 1998 Dec 15;124(2-3):129-41. doi: 10.1006/jsbi.1998.4060. J Struct Biol. 1998. PMID: 10049801 Review.
Cited by
- Low-frequency normal modes that describe allosteric transitions in biological nanomachines are robust to sequence variations.
Zheng W, Brooks BR, Thirumalai D. Zheng W, et al. Proc Natl Acad Sci U S A. 2006 May 16;103(20):7664-9. doi: 10.1073/pnas.0510426103. Epub 2006 May 8. Proc Natl Acad Sci U S A. 2006. PMID: 16682636 Free PMC article. - Coarse-grained models reveal functional dynamics--I. Elastic network models--theories, comparisons and perspectives.
Yang LW, Chng CP. Yang LW, et al. Bioinform Biol Insights. 2008 Mar 4;2:25-45. doi: 10.4137/bbi.s460. Bioinform Biol Insights. 2008. PMID: 19812764 Free PMC article. - Allosteric transitions of supramolecular systems explored by network models: application to chaperonin GroEL.
Yang Z, Májek P, Bahar I. Yang Z, et al. PLoS Comput Biol. 2009 Apr;5(4):e1000360. doi: 10.1371/journal.pcbi.1000360. Epub 2009 Apr 17. PLoS Comput Biol. 2009. PMID: 19381265 Free PMC article. - Distance matrix-based approach to protein structure prediction.
Kloczkowski A, Jernigan RL, Wu Z, Song G, Yang L, Kolinski A, Pokarowski P. Kloczkowski A, et al. J Struct Funct Genomics. 2009 Mar;10(1):67-81. doi: 10.1007/s10969-009-9062-2. Epub 2009 Feb 18. J Struct Funct Genomics. 2009. PMID: 19224393 Free PMC article. - Directional Force Originating from ATP Hydrolysis Drives the GroEL Conformational Change.
Liu J, Sankar K, Wang Y, Jia K, Jernigan RL. Liu J, et al. Biophys J. 2017 Apr 25;112(8):1561-1570. doi: 10.1016/j.bpj.2017.03.004. Biophys J. 2017. PMID: 28445748 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous