Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain - PubMed (original) (raw)
Comparative Study
. 2002 Jan 31;33(3):341-55.
doi: 10.1016/s0896-6273(02)00569-x.
David H Salat, Evelina Busa, Marilyn Albert, Megan Dieterich, Christian Haselgrove, Andre van der Kouwe, Ron Killiany, David Kennedy, Shuna Klaveness, Albert Montillo, Nikos Makris, Bruce Rosen, Anders M Dale
Affiliations
- PMID: 11832223
- DOI: 10.1016/s0896-6273(02)00569-x
Free article
Comparative Study
Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
Bruce Fischl et al. Neuron. 2002.
Free article
Abstract
We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes, the current method assigns one of 37 labels to each voxel, including left and right caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala. The classification technique employs a registration procedure that is robust to anatomical variability, including the ventricular enlargement typically associated with neurological diseases and aging. The technique is shown to be comparable in accuracy to manual labeling, and of sufficient sensitivity to robustly detect changes in the volume of noncortical structures that presage the onset of probable Alzheimer's disease.
Similar articles
- Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Pipitone J, Park MT, Winterburn J, Lett TA, Lerch JP, Pruessner JC, Lepage M, Voineskos AN, Chakravarty MM; Alzheimer's Disease Neuroimaging Initiative. Pipitone J, et al. Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29. Neuroimage. 2014. PMID: 24784800 - Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: Method and validation on controls and patients with Alzheimer's disease.
Chupin M, Mukuna-Bantumbakulu AR, Hasboun D, Bardinet E, Baillet S, Kinkingnéhun S, Lemieux L, Dubois B, Garnero L. Chupin M, et al. Neuroimage. 2007 Feb 1;34(3):996-1019. doi: 10.1016/j.neuroimage.2006.10.035. Epub 2006 Dec 18. Neuroimage. 2007. PMID: 17178234 - Multi-spectral brain tissue segmentation using automatically trained k-Nearest-Neighbor classification.
Vrooman HA, Cocosco CA, van der Lijn F, Stokking R, Ikram MA, Vernooij MW, Breteler MM, Niessen WJ. Vrooman HA, et al. Neuroimage. 2007 Aug 1;37(1):71-81. doi: 10.1016/j.neuroimage.2007.05.018. Epub 2007 May 21. Neuroimage. 2007. PMID: 17572111 - A review on brain structures segmentation in magnetic resonance imaging.
González-Villà S, Oliver A, Valverde S, Wang L, Zwiggelaar R, Lladó X. González-Villà S, et al. Artif Intell Med. 2016 Oct;73:45-69. doi: 10.1016/j.artmed.2016.09.001. Epub 2016 Sep 30. Artif Intell Med. 2016. PMID: 27926381 Review.
Cited by
- Hippocampal Subfield Volumes in Major Depressive Disorder Adolescents with a History of Suicide Attempt.
Zhang Q, Hong S, Cao J, Zhou Y, Xu X, Ai M, Kuang L. Zhang Q, et al. Biomed Res Int. 2021 Apr 12;2021:5524846. doi: 10.1155/2021/5524846. eCollection 2021. Biomed Res Int. 2021. PMID: 33954172 Free PMC article. - Incorporating parameter uncertainty in Bayesian segmentation models: application to hippocampal subfield volumetry.
Iglesias JE, Sabuncu MR, Van Leemput K; Alzheimer's Disease Neuroimaging Initiative. Iglesias JE, et al. Med Image Comput Comput Assist Interv. 2012;15(Pt 3):50-7. doi: 10.1007/978-3-642-33454-2_7. Med Image Comput Comput Assist Interv. 2012. PMID: 23286113 Free PMC article. - Brain gray matter phenotypes across the psychosis dimension.
Ivleva EI, Bidesi AS, Thomas BP, Meda SA, Francis A, Moates AF, Witte B, Keshavan MS, Tamminga CA. Ivleva EI, et al. Psychiatry Res. 2012 Oct 30;204(1):13-24. doi: 10.1016/j.pscychresns.2012.05.001. Psychiatry Res. 2012. PMID: 23177922 Free PMC article. - Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness.
Anticevic A, Cole MW, Repovs G, Murray JD, Brumbaugh MS, Winkler AM, Savic A, Krystal JH, Pearlson GD, Glahn DC. Anticevic A, et al. Cereb Cortex. 2014 Dec;24(12):3116-30. doi: 10.1093/cercor/bht165. Epub 2013 Jul 3. Cereb Cortex. 2014. PMID: 23825317 Free PMC article. - Brain age prediction in schizophrenia: Does the choice of machine learning algorithm matter?
Lee WH, Antoniades M, Schnack HG, Kahn RS, Frangou S. Lee WH, et al. Psychiatry Res Neuroimaging. 2021 Apr 30;310:111270. doi: 10.1016/j.pscychresns.2021.111270. Epub 2021 Mar 5. Psychiatry Res Neuroimaging. 2021. PMID: 33714090 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical