Brain macrophages inhibit gap junctional communication and downregulate connexin 43 expression in cultured astrocytes - PubMed (original) (raw)

Brain macrophages inhibit gap junctional communication and downregulate connexin 43 expression in cultured astrocytes

N Rouach et al. Eur J Neurosci. 2002 Jan.

Abstract

Astrocytes are typically interconnected by gap junction channels that allow, in vitro as well as in vivo, a high degree of intercellular communication between these glial cells. Using cocultures of astrocytes and neurons, we have demonstrated that gap junctional communication (GJC) and connexin 43 (Cx43) expression, the major junctional protein in astrocytes, are controlled by neuronal activity. Moreover, neuronal death downregulates these two parameters. Because in several brain pathologies neuronal loss is associated with an increase in brain macrophage (BM) density, we have now investigated whether coculture with BM affects astrocyte gap junctions. We report here that addition of BM for 24 h decreases the expression of GJC and Cx43 in astrocytes in a density-dependent manner. In contrast, Cx43 is not detected in BM and no heterotypic coupling is observed between the two cell types. A soluble factor does not seem to be involved in these inhibitions because they are not observed either in the presence of BM conditioned media or in the absence of direct contact between the two cell types by using inserts. These observations could have pathophysiological relevance as neuronal death, microglial proliferation and astrocytic reactions occur in brain injuries and pathologies. Because astrocyte interactions with BM and dying neurons both result in the downregulation of Cx43 expression and in the inhibition of GJC, a critical consequence on astrocytic phenotype in those situations could be the inhibition of gap junctions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources