Non-constant tumour blood flow--implications for therapy - PubMed (original) (raw)
Non-constant tumour blood flow--implications for therapy
R E Durand et al. Acta Oncol. 2001.
Abstract
In the past few years, 'perfusion-limited' hypoxia caused by intermittent decreases in tumour blood flow has received increasing attention. Little effort, however, has gone into characterizing the nature, magnitude or duration of these changes, or their functional significance other than as modifiers of radiotherapy. We have therefore undertaken multiple, quantitative analyses of tumour blood flow in human tumour xenograft systems, and rigorously examined the ramifications of transient blood flow changes. Tumour blood flow in these experimental tumours is much less constant than has previously been assumed, and not only impacts on response to radiotherapy and chemotherapy, but also on the more fundamental processes of tumour growth and repopulation. Notably, responses entirely consistent with the laboratory results have been seen in our initial studies of human tumours sequentially biopsied during treatment.
Similar articles
- Tumour blood flow influences combined radiation and doxorubicin treatments.
Durand RE, LePard NE. Durand RE, et al. Radiother Oncol. 1997 Feb;42(2):171-9. doi: 10.1016/s0167-8140(96)01878-6. Radiother Oncol. 1997. PMID: 9106927 - Quantifying transient hypoxia in human tumor xenografts by flow cytometry.
Bennewith KL, Durand RE. Bennewith KL, et al. Cancer Res. 2004 Sep 1;64(17):6183-9. doi: 10.1158/0008-5472.CAN-04-0289. Cancer Res. 2004. PMID: 15342403 - Clinical relevance of intermittent tumour blood flow.
Durand RE, Aquino-Parsons C. Durand RE, et al. Acta Oncol. 2001;40(8):929-36. doi: 10.1080/02841860152708206. Acta Oncol. 2001. PMID: 11845957 Review. - Vascular architecture and microenvironmental parameters in human squamous cell carcinoma xenografts: effects of carbogen and nicotinamide.
Bussink J, Kaanders JH, Rijken PF, Peters JP, Hodgkiss RJ, Marres HA, van der Kogel AJ. Bussink J, et al. Radiother Oncol. 1999 Feb;50(2):173-84. doi: 10.1016/s0167-8140(99)00010-9. Radiother Oncol. 1999. PMID: 10368041 - [Chemotherapy for high-risk cervical carcinoma].
Yamamoto R, Sakuragi N, Okamoto K. Yamamoto R, et al. Nihon Rinsho. 2004 Oct;62 Suppl 10:169-74. Nihon Rinsho. 2004. PMID: 15535227 Review. Japanese. No abstract available.
Cited by
- Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response.
Dewhirst MW, Cao Y, Moeller B. Dewhirst MW, et al. Nat Rev Cancer. 2008 Jun;8(6):425-37. doi: 10.1038/nrc2397. Nat Rev Cancer. 2008. PMID: 18500244 Free PMC article. Review. - PERK/eIF2α signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS.
Rouschop KM, Dubois LJ, Keulers TG, van den Beucken T, Lambin P, Bussink J, van der Kogel AJ, Koritzinsky M, Wouters BG. Rouschop KM, et al. Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4622-7. doi: 10.1073/pnas.1210633110. Epub 2013 Mar 7. Proc Natl Acad Sci U S A. 2013. PMID: 23471998 Free PMC article. - Imaging tumor hypoxia to advance radiation oncology.
Lee CT, Boss MK, Dewhirst MW. Lee CT, et al. Antioxid Redox Signal. 2014 Jul 10;21(2):313-37. doi: 10.1089/ars.2013.5759. Epub 2014 Mar 24. Antioxid Redox Signal. 2014. PMID: 24329000 Free PMC article. Review. - Transiently hypoxic tumour cell turnover and radiation sensitivity in human tumour xenografts.
Wadsworth BJ, Lee CM, Bennewith KL. Wadsworth BJ, et al. Br J Cancer. 2022 Jun;126(11):1616-1626. doi: 10.1038/s41416-021-01691-5. Epub 2022 Jan 14. Br J Cancer. 2022. PMID: 35031765 Free PMC article. - Extracellular Vesicles as Transmitters of Hypoxia Tolerance in Solid Cancers.
Zonneveld MI, Keulers TGH, Rouschop KMA. Zonneveld MI, et al. Cancers (Basel). 2019 Jan 29;11(2):154. doi: 10.3390/cancers11020154. Cancers (Basel). 2019. PMID: 30699970 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous