Sequences and replication of genomes of the archaeal rudiviruses SIRV1 and SIRV2: relationships to the archaeal lipothrixvirus SIFV and some eukaryal viruses - PubMed (original) (raw)
Comparative Study
. 2001 Dec 20;291(2):226-34.
doi: 10.1006/viro.2001.1190.
Affiliations
- PMID: 11878892
- DOI: 10.1006/viro.2001.1190
Free article
Comparative Study
Sequences and replication of genomes of the archaeal rudiviruses SIRV1 and SIRV2: relationships to the archaeal lipothrixvirus SIFV and some eukaryal viruses
X Peng et al. Virology. 2001.
Free article
Abstract
The double-stranded DNA genomes of the viruses SIRV1 and SIRV2, which infect the extremely thermophilic archaeon Sulfolobus and belong to the family Rudiviridae, were sequenced. They are linear, covalently closed at the ends, and 32,312 and 35,502 bp long, respectively, with an A+T content of 75%. The genomes of SIRV1 and SIRV2 carry inverted terminal repeats of 2029 and 1628 bp, respectively, which contain multiple direct repeats. SIRV1 and SIRV2 genomes contain 45 and 54 ORFs, respectively, of which 44 are homologous to one another. Their predicted functions include a DNA polymerase, a Holliday junction resolvase, and a dUTPase. The genomes consist of blocks with well-conserved sequences separated by nonconserved sequences. Recombination, gene duplication, horizontal gene transfer, and substitution of viral genes by homologous host genes have contributed to their evolution. The finding of head-to-head and tail-to-tail linked replicative intermediates suggests that the linear genomes replicate by the same mechanism as the similarly organized linear genomes of the eukaryal poxviruses, African swine fever virus and Chlorella viruses. SIRV1 and SIRV2 both contain motifs that resemble the binding sites for Holliday junction resolvases of eukaryal viruses and may use common mechanisms for resolution of replicative intermediates. The results suggest a common origin of the replication machineries of the archaeal rudiviruses and the above-mentioned eukaryal viruses. About 1/3 of the ORFs of each rudivirus have homologs in the Sulfolobus virus SIFV of the family Lipothrixviridae, indicating that the two viral families form a superfamily. The finding of inverted repeats of at least 0.8 kb at the termini of the linear genome of SIFV supports this inference.
(C)2001 Elsevier Science.
Similar articles
- The genome of the archaeal virus SIRV1 has features in common with genomes of eukaryal viruses.
Blum H, Zillig W, Mallok S, Domdey H, Prangishvili D. Blum H, et al. Virology. 2001 Mar 1;281(1):6-9. doi: 10.1006/viro.2000.0776. Virology. 2001. PMID: 11222090 - A novel rudivirus, ARV1, of the hyperthermophilic archaeal genus Acidianus.
Vestergaard G, Häring M, Peng X, Rachel R, Garrett RA, Prangishvili D. Vestergaard G, et al. Virology. 2005 May 25;336(1):83-92. doi: 10.1016/j.virol.2005.02.025. Virology. 2005. PMID: 15866073 - Multiple variants of the archaeal DNA rudivirus SIRV1 in a single host and a novel mechanism of genomic variation.
Peng X, Kessler A, Phan H, Garrett RA, Prangishvili D. Peng X, et al. Mol Microbiol. 2004 Oct;54(2):366-75. doi: 10.1111/j.1365-2958.2004.04287.x. Mol Microbiol. 2004. PMID: 15469509 - Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses.
Prangishvili D, Garrett RA. Prangishvili D, et al. Biochem Soc Trans. 2004 Apr;32(Pt 2):204-8. doi: 10.1042/bst0320204. Biochem Soc Trans. 2004. PMID: 15046572 Review. - Genomics and biology of Rudiviruses, a model for the study of virus-host interactions in Archaea.
Prangishvili D, Koonin EV, Krupovic M. Prangishvili D, et al. Biochem Soc Trans. 2013 Feb 1;41(1):443-50. doi: 10.1042/BST20120313. Biochem Soc Trans. 2013. PMID: 23356326 Free PMC article. Review.
Cited by
- Effects of culturing on the population structure of a hyperthermophilic virus.
Snyder JC, Spuhler J, Wiedenheft B, Roberto FF, Douglas T, Young MJ. Snyder JC, et al. Microb Ecol. 2004 Nov;48(4):561-6. doi: 10.1007/s00248-004-0246-9. Epub 2004 Nov 4. Microb Ecol. 2004. PMID: 15696389 - A putative viral defence mechanism in archaeal cells.
Lillestøl RK, Redder P, Garrett RA, Brügger K. Lillestøl RK, et al. Archaea. 2006 Aug;2(1):59-72. doi: 10.1155/2006/542818. Archaea. 2006. PMID: 16877322 Free PMC article. - Genome sequence of a novel archaeal rudivirus recovered from a mexican hot spring.
Servín-Garcidueñas LE, Peng X, Garrett RA, Martínez-Romero E. Servín-Garcidueñas LE, et al. Genome Announc. 2013 Jan;1(1):e00040-12. doi: 10.1128/genomeA.00040-12. Epub 2013 Jan 15. Genome Announc. 2013. PMID: 23405288 Free PMC article. - Massive activation of archaeal defense genes during viral infection.
Quax TE, Voet M, Sismeiro O, Dillies MA, Jagla B, Coppée JY, Sezonov G, Forterre P, van der Oost J, Lavigne R, Prangishvili D. Quax TE, et al. J Virol. 2013 Aug;87(15):8419-28. doi: 10.1128/JVI.01020-13. Epub 2013 May 22. J Virol. 2013. PMID: 23698312 Free PMC article. - Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures.
Häring M, Vestergaard G, Brügger K, Rachel R, Garrett RA, Prangishvili D. Häring M, et al. J Bacteriol. 2005 Jun;187(11):3855-8. doi: 10.1128/JB.187.11.3855-3858.2005. J Bacteriol. 2005. PMID: 15901711 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources