Mutant SOD1 causes motor neuron disease independent of copper chaperone-mediated copper loading - PubMed (original) (raw)

Mutant SOD1 causes motor neuron disease independent of copper chaperone-mediated copper loading

Jamuna R Subramaniam et al. Nat Neurosci. 2002 Apr.

Abstract

Copper-mediated oxidative damage is proposed to play a critical role in the pathogenesis of Cu/Zn superoxide dismutase (SOD1)-linked familial amyotrophic lateral sclerosis (FALS). We tested this hypothesis by ablating the gene encoding the copper chaperone for SOD1 (CCS) in a series of FALS-linked SOD1 mutant mice. Metabolic 64Cu labeling in SOD1-mutant mice lacking the CCS showed that the incorporation of copper into mutant SOD1 was significantly diminished in the absence of CCS. Motor neurons in CCS-/- mice showed increased rate of death after facial nerve axotomy, a response documented for SOD1-/- mice. Thus, CCS is necessary for the efficient incorporation of copper into SOD1 in motor neurons. Although the absence of CCS led to a significant reduction in the amount of copper-loaded mutant SOD1, however, it did not modify the onset and progression of motor neuron disease in SOD1-mutant mice. Hence, CCS-dependent copper loading of mutant SOD1 plays no role in the pathogenesis of motor neuron disease in these mouse models.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources