Chi(1) rotamer populations and angles of mobile surface side chains are accurately predicted by a torsion angle database potential of mean force - PubMed (original) (raw)
. 2002 Mar 27;124(12):2866-7.
doi: 10.1021/ja017712p.
Affiliations
- PMID: 11902865
- DOI: 10.1021/ja017712p
Chi(1) rotamer populations and angles of mobile surface side chains are accurately predicted by a torsion angle database potential of mean force
G Marius Clore et al. J Am Chem Soc. 2002.
Abstract
The equilibrium angles and distributions of chi(1) rotamers for mobile surface side chains of the small, 63-residue, B1 domain of protein L have been calculated from the static crystal structure by rigid body/torsion angle simulated annealing using a torsion angle database potential of mean force and compared to those deduced by Monte Carlo analysis of side chain residual dipolar couplings measured in solution. Good agreement between theory and experiment is observed, indicating that for side chains undergoing rotamer averaging that is fast on the chemical shift time scale, the equilibrium angles and distribution of chi(1) rotamers are largely determined by the backbone phi/psi torsion angles.
Similar articles
- Chi1 torsion angle dynamics in proteins from dipolar couplings.
Mittermaier A, Kay LE. Mittermaier A, et al. J Am Chem Soc. 2001 Jul 18;123(28):6892-903. doi: 10.1021/ja010595d. J Am Chem Soc. 2001. PMID: 11448195 - Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins.
Schrauber H, Eisenhaber F, Argos P. Schrauber H, et al. J Mol Biol. 1993 Mar 20;230(2):592-612. doi: 10.1006/jmbi.1993.1172. J Mol Biol. 1993. PMID: 8464066 - Protein imperfections: separating intrinsic from extrinsic variation of torsion angles.
Butterfoss GL, Richardson JS, Hermans J. Butterfoss GL, et al. Acta Crystallogr D Biol Crystallogr. 2005 Jan;61(Pt 1):88-98. doi: 10.1107/S0907444904027325. Epub 2004 Dec 17. Acta Crystallogr D Biol Crystallogr. 2005. PMID: 15608380 - Rotamer Dynamics: Analysis of Rotamers in Molecular Dynamics Simulations of Proteins.
Haddad Y, Adam V, Heger Z. Haddad Y, et al. Biophys J. 2019 Jun 4;116(11):2062-2072. doi: 10.1016/j.bpj.2019.04.017. Epub 2019 Apr 22. Biophys J. 2019. PMID: 31084902 Free PMC article. Review.
Cited by
- The PRE-Derived NMR Model of the 38.8-kDa Tri-Domain IsdH Protein from Staphylococcus aureus Suggests That It Adaptively Recognizes Human Hemoglobin.
Sjodt M, Macdonald R, Spirig T, Chan AH, Dickson CF, Fabian M, Olson JS, Gell DA, Clubb RT. Sjodt M, et al. J Mol Biol. 2016 Mar 27;428(6):1107-1129. doi: 10.1016/j.jmb.2015.02.008. Epub 2015 Feb 14. J Mol Biol. 2016. PMID: 25687963 Free PMC article. - Solution structure of a small protein containing a fluorinated side chain in the core.
Cornilescu G, Hadley EB, Woll MG, Markley JL, Gellman SH, Cornilescu CC. Cornilescu G, et al. Protein Sci. 2007 Jan;16(1):14-9. doi: 10.1110/ps.062557707. Epub 2006 Nov 22. Protein Sci. 2007. PMID: 17123960 Free PMC article. - Reweighted atomic densities to represent ensembles of NMR structures.
Schwieters CD, Clore GM. Schwieters CD, et al. J Biomol NMR. 2002 Jul;23(3):221-5. doi: 10.1023/a:1019875223132. J Biomol NMR. 2002. PMID: 12238594 - Solution structure and dynamic analysis of chicken MBD2 methyl binding domain bound to a target-methylated DNA sequence.
Scarsdale JN, Webb HD, Ginder GD, Williams DC Jr. Scarsdale JN, et al. Nucleic Acids Res. 2011 Aug;39(15):6741-52. doi: 10.1093/nar/gkr262. Epub 2011 Apr 29. Nucleic Acids Res. 2011. PMID: 21531701 Free PMC article. - Ultrahigh resolution protein structures using NMR chemical shift tensors.
Wylie BJ, Sperling LJ, Nieuwkoop AJ, Franks WT, Oldfield E, Rienstra CM. Wylie BJ, et al. Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16974-9. doi: 10.1073/pnas.1103728108. Epub 2011 Oct 3. Proc Natl Acad Sci U S A. 2011. PMID: 21969532 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources