MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II - PubMed (original) (raw)
. 2002 Apr;148(Pt 4):951-960.
doi: 10.1099/00221287-148-4-951.
Affiliations
- PMID: 11932442
- DOI: 10.1099/00221287-148-4-951
Free article
MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II
Hedia Marrakchi et al. Microbiology (Reading). 2002 Apr.
Free article
Abstract
The fatty acid elongation system FAS-II is involved in the biosynthesis of mycolic acids, which are very long-chain fatty acids of the cell envelope specific to Mycobacterium tuberculosis and other mycobacteria. A potential component of FAS-II, the protein MabA (FabG1), was overexpressed and purified. Sedimentation equilibrium analyses revealed that MabA undergoes a dimer to tetramer self-association with a dissociation constant of 22 microM. The protein was detected by Western blotting in a mycobacterial cell-wall extract that produces mycolic acids and in the FPLC FAS-II fraction. MabA was shown to catalyse the NADPH-specific reduction of beta-ketoacyl derivatives, equivalent to the second step of a FAS-II elongation round. Unlike the known homologous proteins, MabA preferentially metabolizes long-chain substrates (C(8)-C(20)) and has a poor affinity for the C(4) substrate, in agreement with FAS-II specificities. Molecular modelling of MabA structure suggested the presence of an unusually hydrophobic substrate-binding pocket holding a unique Trp residue, suitable for fluorescence spectroscopic analyses. In agreement with the enzyme kinetic data, the spectral properties of MabA were different in the presence of the C(8)-C(16) ligands as compared to the C(4) ligand. Altogether, these data bring out distinctive enzymic and structural properties of MabA, which correlate with its predilection for long-chain substrates, in contrast to most of the other known ketoacyl reductases.
Similar articles
- Crystal structure of MabA from Mycobacterium tuberculosis, a reductase involved in long-chain fatty acid biosynthesis.
Cohen-Gonsaud M, Ducasse S, Hoh F, Zerbib D, Labesse G, Quemard A. Cohen-Gonsaud M, et al. J Mol Biol. 2002 Jul 5;320(2):249-61. doi: 10.1016/S0022-2836(02)00463-1. J Mol Biol. 2002. PMID: 12079383 - Phosphorylation of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein reductase MabA regulates mycolic acid biosynthesis.
Veyron-Churlet R, Zanella-Cléon I, Cohen-Gonsaud M, Molle V, Kremer L. Veyron-Churlet R, et al. J Biol Chem. 2010 Apr 23;285(17):12714-25. doi: 10.1074/jbc.M110.105189. Epub 2010 Feb 23. J Biol Chem. 2010. PMID: 20178986 Free PMC article. - The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis.
Sacco E, Covarrubias AS, O'Hare HM, Carroll P, Eynard N, Jones TA, Parish T, Daffé M, Bäckbro K, Quémard A. Sacco E, et al. Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14628-33. doi: 10.1073/pnas.0704132104. Epub 2007 Sep 5. Proc Natl Acad Sci U S A. 2007. PMID: 17804795 Free PMC article. - The Molecular Genetics of Mycolic Acid Biosynthesis.
PaweŁczyk J, Kremer L. PaweŁczyk J, et al. Microbiol Spectr. 2014 Aug;2(4):MGM2-0003-2013. doi: 10.1128/microbiolspec.MGM2-0003-2013. Microbiol Spectr. 2014. PMID: 26104214 Review. - The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development.
Bhatt A, Molle V, Besra GS, Jacobs WR Jr, Kremer L. Bhatt A, et al. Mol Microbiol. 2007 Jun;64(6):1442-54. doi: 10.1111/j.1365-2958.2007.05761.x. Mol Microbiol. 2007. PMID: 17555433 Review.
Cited by
- Defining mycobacteria: Shared and specific genome features for different lifestyles.
Vissa VD, Sakamuri RM, Li W, Brennan PJ. Vissa VD, et al. Indian J Microbiol. 2009 Mar;49(1):11-47. doi: 10.1007/s12088-009-0006-0. Epub 2009 Feb 5. Indian J Microbiol. 2009. PMID: 23100749 Free PMC article. - The Mycobacterium tuberculosis relBE toxin:antitoxin genes are stress-responsive modules that regulate growth through translation inhibition.
Korch SB, Malhotra V, Contreras H, Clark-Curtiss JE. Korch SB, et al. J Microbiol. 2015 Nov;53(11):783-95. doi: 10.1007/s12275-015-5333-8. Epub 2015 Oct 28. J Microbiol. 2015. PMID: 26502963 Free PMC article. - Exploring the Antitubercular Activity of Anthranilic Acid Derivatives: From MabA (FabG1) Inhibition to Intrabacterial Acidification.
Faïon L, Djaout K, Pintiala C, Piveteau C, Leroux F, Biela A, Slupek S, Antoine R, Záhorszká M, Cantrelle FX, Hanoulle X, Korduláková J, Deprez B, Willand N, Baulard AR, Flipo M. Faïon L, et al. Pharmaceuticals (Basel). 2023 Feb 22;16(3):335. doi: 10.3390/ph16030335. Pharmaceuticals (Basel). 2023. PMID: 36986435 Free PMC article. - Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production.
Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, Farhat MR, Cheng TY, Moody DB, Murray M, Galagan JE. Colijn C, et al. PLoS Comput Biol. 2009 Aug;5(8):e1000489. doi: 10.1371/journal.pcbi.1000489. Epub 2009 Aug 28. PLoS Comput Biol. 2009. PMID: 19714220 Free PMC article. - Fatty acid biosynthesis in actinomycetes.
Gago G, Diacovich L, Arabolaza A, Tsai SC, Gramajo H. Gago G, et al. FEMS Microbiol Rev. 2011 May;35(3):475-97. doi: 10.1111/j.1574-6976.2010.00259.x. Epub 2011 Jan 19. FEMS Microbiol Rev. 2011. PMID: 21204864 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous