Comparison of helix interactions in membrane and soluble alpha-bundle proteins - PubMed (original) (raw)
Comparison of helix interactions in membrane and soluble alpha-bundle proteins
Markus Eilers et al. Biophys J. 2002 May.
Abstract
Helix-helix interactions are important for the folding, stability, and function of membrane proteins. Here, two independent and complementary methods are used to investigate the nature and distribution of amino acids that mediate helix-helix interactions in membrane and soluble alpha-bundle proteins. The first method characterizes the packing density of individual amino acids in helical proteins based on the van der Waals surface area occluded by surrounding atoms. We have recently used this method to show that transmembrane helices pack more tightly, on average, than helices in soluble proteins. These studies are extended here to characterize the packing of interfacial and noninterfacial amino acids and the packing of amino acids in the interfaces of helices that have either right- or left-handed crossing angles, and either parallel or antiparallel orientations. We show that the most abundant tightly packed interfacial residues in membrane proteins are Gly, Ala, and Ser, and that helices with left-handed crossing angles are more tightly packed on average than helices with right-handed crossing angles. The second method used to characterize helix-helix interactions involves the use of helix contact plots. We find that helices in membrane proteins exhibit a broader distribution of interhelical contacts than helices in soluble proteins. Both helical membrane and soluble proteins make use of a general motif for helix interactions that relies mainly on four residues (Leu, Ala, Ile, Val) to mediate helix interactions in a fashion characteristic of left-handed helical coiled coils. However, a second motif for mediating helix interactions is revealed by the high occurrence and high average packing values of small and polar residues (Ala, Gly, Ser, Thr) in the helix interfaces of membrane proteins. Finally, we show that there is a strong linear correlation between the occurrence of residues in helix-helix interfaces and their packing values, and discuss these results with respect to membrane protein structure prediction and membrane protein stability.
Similar articles
- Helix packing moments reveal diversity and conservation in membrane protein structure.
Liu W, Eilers M, Patel AB, Smith SO. Liu W, et al. J Mol Biol. 2004 Mar 26;337(3):713-29. doi: 10.1016/j.jmb.2004.02.001. J Mol Biol. 2004. PMID: 15019789 - Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins.
Adamian L, Liang J. Adamian L, et al. J Mol Biol. 2001 Aug 24;311(4):891-907. doi: 10.1006/jmbi.2001.4908. J Mol Biol. 2001. PMID: 11518538 - Helix packing in membrane proteins.
Bowie JU. Bowie JU. J Mol Biol. 1997 Oct 10;272(5):780-9. doi: 10.1006/jmbi.1997.1279. J Mol Biol. 1997. PMID: 9368657 - Ca2+ -ATPase structure in the E1 and E2 conformations: mechanism, helix-helix and helix-lipid interactions.
Lee AG. Lee AG. Biochim Biophys Acta. 2002 Oct 11;1565(2):246-66. doi: 10.1016/s0005-2736(02)00573-4. Biochim Biophys Acta. 2002. PMID: 12409199 Review. - From interactions of single transmembrane helices to folding of alpha-helical membrane proteins: analyzing transmembrane helix-helix interactions in bacteria.
Schneider D, Finger C, Prodöhl A, Volkmer T. Schneider D, et al. Curr Protein Pept Sci. 2007 Feb;8(1):45-61. doi: 10.2174/138920307779941578. Curr Protein Pept Sci. 2007. PMID: 17305560 Review.
Cited by
- Glycines: role in α-helical membrane protein structures and a potential indicator of native conformation.
Dong H, Sharma M, Zhou HX, Cross TA. Dong H, et al. Biochemistry. 2012 Jun 19;51(24):4779-89. doi: 10.1021/bi300090x. Epub 2012 Jun 7. Biochemistry. 2012. PMID: 22650985 Free PMC article. Review. - The membrane- and soluble-protein helix-helix interactome: similar geometry via different interactions.
Zhang SQ, Kulp DW, Schramm CA, Mravic M, Samish I, DeGrado WF. Zhang SQ, et al. Structure. 2015 Mar 3;23(3):527-541. doi: 10.1016/j.str.2015.01.009. Epub 2015 Feb 19. Structure. 2015. PMID: 25703378 Free PMC article. - Different gating mechanisms in glutamate receptor and K+ channels.
Sobolevsky AI, Yelshansky MV, Wollmuth LP. Sobolevsky AI, et al. J Neurosci. 2003 Aug 20;23(20):7559-68. doi: 10.1523/JNEUROSCI.23-20-07559.2003. J Neurosci. 2003. PMID: 12930794 Free PMC article. - Coupling of retinal isomerization to the activation of rhodopsin.
Patel AB, Crocker E, Eilers M, Hirshfeld A, Sheves M, Smith SO. Patel AB, et al. Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10048-53. doi: 10.1073/pnas.0402848101. Epub 2004 Jun 25. Proc Natl Acad Sci U S A. 2004. PMID: 15220479 Free PMC article. - Amyloidogenic processing but not amyloid precursor protein (APP) intracellular C-terminal domain production requires a precisely oriented APP dimer assembled by transmembrane GXXXG motifs.
Kienlen-Campard P, Tasiaux B, Van Hees J, Li M, Huysseune S, Sato T, Fei JZ, Aimoto S, Courtoy PJ, Smith SO, Constantinescu SN, Octave JN. Kienlen-Campard P, et al. J Biol Chem. 2008 Mar 21;283(12):7733-44. doi: 10.1074/jbc.M707142200. Epub 2008 Jan 16. J Biol Chem. 2008. PMID: 18201969 Free PMC article.
References
- J Mol Biol. 1993 Oct 5;233(3):464-79 - PubMed
- Biochem Biophys Res Commun. 1999 Oct 5;263(3):714-7 - PubMed
- J Mol Biol. 1996 Jan 26;255(3):536-53 - PubMed
- J Mol Biol. 1978 Mar 15;119(4):537-55 - PubMed
- J Mol Biol. 1979 Oct 15;134(1):23-40 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources