Network motifs in the transcriptional regulation network of Escherichia coli - PubMed (original) (raw)
doi: 10.1038/ng881. Epub 2002 Apr 22.
Affiliations
- PMID: 11967538
- DOI: 10.1038/ng881
Network motifs in the transcriptional regulation network of Escherichia coli
Shai S Shen-Orr et al. Nat Genet. 2002 May.
Abstract
Little is known about the design principles of transcriptional regulation networks that control gene expression in cells. Recent advances in data collection and analysis, however, are generating unprecedented amounts of information about gene regulation networks. To understand these complex wiring diagrams, we sought to break down such networks into basic building blocks. We generalize the notion of motifs, widely used for sequence analysis, to the level of networks. We define 'network motifs' as patterns of interconnections that recur in many different parts of a network at frequencies much higher than those found in randomized networks. We applied new algorithms for systematically detecting network motifs to one of the best-characterized regulation networks, that of direct transcriptional interactions in Escherichia coli. We find that much of the network is composed of repeated appearances of three highly significant motifs. Each network motif has a specific function in determining gene expression, such as generating temporal expression programs and governing the responses to fluctuating external signals. The motif structure also allows an easily interpretable view of the entire known transcriptional network of the organism. This approach may help define the basic computational elements of other biological networks.
Similar articles
- Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach.
Ma HW, Buer J, Zeng AP. Ma HW, et al. BMC Bioinformatics. 2004 Dec 16;5:199. doi: 10.1186/1471-2105-5-199. BMC Bioinformatics. 2004. PMID: 15603590 Free PMC article. - Bridge and brick network motifs: identifying significant building blocks from complex biological systems.
Huang CY, Cheng CY, Sun CT. Huang CY, et al. Artif Intell Med. 2007 Oct;41(2):117-27. doi: 10.1016/j.artmed.2007.07.006. Epub 2007 Sep 7. Artif Intell Med. 2007. PMID: 17825540 - Ranking of network elements based on functional substructures.
Koschützki D, Schwöbbermeyer H, Schreiber F. Koschützki D, et al. J Theor Biol. 2007 Oct 7;248(3):471-9. doi: 10.1016/j.jtbi.2007.05.038. Epub 2007 Jun 6. J Theor Biol. 2007. PMID: 17644116 - Transcriptional regulatory networks in bacteria: from input signals to output responses.
Seshasayee AS, Bertone P, Fraser GM, Luscombe NM. Seshasayee AS, et al. Curr Opin Microbiol. 2006 Oct;9(5):511-9. doi: 10.1016/j.mib.2006.08.007. Epub 2006 Aug 30. Curr Opin Microbiol. 2006. PMID: 16942903 Review. - Modeling transcriptional control in gene networks--methods, recent results, and future directions.
Smolen P, Baxter DA, Byrne JH. Smolen P, et al. Bull Math Biol. 2000 Mar;62(2):247-92. doi: 10.1006/bulm.1999.0155. Bull Math Biol. 2000. PMID: 10824430 Review.
Cited by
- Every Site Counts: Submitting Transcription Factor-Binding Site Information through the CollecTF Portal.
Erill I. Erill I. J Bacteriol. 2015 Aug 1;197(15):2454-7. doi: 10.1128/JB.00031-15. Epub 2015 May 26. J Bacteriol. 2015. PMID: 26013488 Free PMC article. - Inducing chaos in a gene regulatory network by coupling an oscillating dynamics with a hysteresis-type one.
Poignard C. Poignard C. J Math Biol. 2014 Aug;69(2):335-68. doi: 10.1007/s00285-013-0703-5. Epub 2013 Jul 10. J Math Biol. 2014. PMID: 23842815 - ADAR regulates APOL1 via A-to-I RNA editing by inhibition of MDA5 activation in a paradoxical biological circuit.
Riella CV, McNulty M, Ribas GT, Tattersfield CF, Perez-Gill C, Eichinger F, Kelly J, Chun J, Subramanian B, Guizelini D; Nephrotic Syndrome Study Network (NEPTUNE); Alper SL, Pollak MR, Sampson MG, Friedman DJ. Riella CV, et al. Proc Natl Acad Sci U S A. 2022 Nov;119(44):e2210150119. doi: 10.1073/pnas.2210150119. Epub 2022 Oct 25. Proc Natl Acad Sci U S A. 2022. PMID: 36282916 Free PMC article. - Prokaryotic genome regulation: a revolutionary paradigm.
Ishihama A. Ishihama A. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88(9):485-508. doi: 10.2183/pjab.88.485. Proc Jpn Acad Ser B Phys Biol Sci. 2012. PMID: 23138451 Free PMC article. Review. - Modeling gene regulatory network motifs using Statecharts.
Fioravanti F, Helmer-Citterich M, Nardelli E. Fioravanti F, et al. BMC Bioinformatics. 2012 Mar 28;13 Suppl 4(Suppl 4):S20. doi: 10.1186/1471-2105-13-S4-S20. BMC Bioinformatics. 2012. PMID: 22536967 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources