Single-particle imaging of macromolecules by cryo-electron microscopy - PubMed (original) (raw)
Review
Single-particle imaging of macromolecules by cryo-electron microscopy
Joachim Frank. Annu Rev Biophys Biomol Struct. 2002.
Abstract
Cryo-electron microscopy (cryo-EM) of biological molecules in single-particle (i.e., unordered, nonaggregated) form is a new approach to the study of molecular assemblies, which are often too large and flexible to be amenable to X-ray crystallography. New insights into biological function on the molecular level are expected from cryo-EM applied to the study of such complexes "trapped" at different stages of their conformational changes and dynamical interactions. Important molecular machines involved in the fundamental processes of transcription, mRNA splicing, and translation are examples for successful applications of the new technique, combined with structural knowledge gained by conventional techniques of structure determination, such as X-ray crystallography and NMR.
Similar articles
- Cryo-electron microscopy of spliceosomal components.
Stark H, Lührmann R. Stark H, et al. Annu Rev Biophys Biomol Struct. 2006;35:435-57. doi: 10.1146/annurev.biophys.35.040405.101953. Annu Rev Biophys Biomol Struct. 2006. PMID: 16689644 Review. - Cryo-electron microscopy as an investigative tool: the ribosome as an example.
Frank J. Frank J. Bioessays. 2001 Aug;23(8):725-32. doi: 10.1002/bies.1102. Bioessays. 2001. PMID: 11494321 Review. - Cryo-electron microscopy of ribosomal complexes in cotranslational folding, targeting, and translocation.
Knoops K, Schoehn G, Schaffitzel C. Knoops K, et al. Wiley Interdiscip Rev RNA. 2012 May-Jun;3(3):429-41. doi: 10.1002/wrna.119. Epub 2011 Nov 17. Wiley Interdiscip Rev RNA. 2012. PMID: 22095783 Review. - Ribosomal dynamics explored by cryo-electron microscopy.
Frank J. Frank J. Methods. 2001 Nov;25(3):309-15. doi: 10.1006/meth.2001.1243. Methods. 2001. PMID: 11860285 - Studying structure and function of spliceosomal helicases.
Ficner R, Dickmanns A, Neumann P. Ficner R, et al. Methods. 2017 Aug 1;125:63-69. doi: 10.1016/j.ymeth.2017.06.028. Epub 2017 Jun 29. Methods. 2017. PMID: 28668587 Review.
Cited by
- Enhanced sampling and overfitting analyses in structural refinement of nucleic acids into electron microscopy maps.
Vashisth H, Skiniotis G, Brooks CL 3rd. Vashisth H, et al. J Phys Chem B. 2013 Apr 11;117(14):3738-46. doi: 10.1021/jp3126297. Epub 2013 Apr 1. J Phys Chem B. 2013. PMID: 23506287 Free PMC article. - Cross-Validation of Data Compatibility Between Small Angle X-ray Scattering and Cryo-Electron Microscopy.
Kim JS, Afsari B, Chirikjian GS. Kim JS, et al. J Comput Biol. 2017 Jan;24(1):13-30. doi: 10.1089/cmb.2016.0139. Epub 2016 Oct 6. J Comput Biol. 2017. PMID: 27710115 Free PMC article. - High-contrast observation of unstained proteins and viruses by scanning electron microscopy.
Ogura T. Ogura T. PLoS One. 2012;7(10):e46904. doi: 10.1371/journal.pone.0046904. Epub 2012 Oct 8. PLoS One. 2012. PMID: 23056522 Free PMC article. - Optical Excitations with Electron Beams: Challenges and Opportunities.
García de Abajo FJ, Di Giulio V. García de Abajo FJ, et al. ACS Photonics. 2021 Apr 21;8(4):945-974. doi: 10.1021/acsphotonics.0c01950. Epub 2021 Mar 25. ACS Photonics. 2021. PMID: 35356759 Free PMC article. Review. - Insights into the molecular architecture of the 26S proteasome.
Nickell S, Beck F, Scheres SH, Korinek A, Förster F, Lasker K, Mihalache O, Sun N, Nagy I, Sali A, Plitzko JM, Carazo JM, Mann M, Baumeister W. Nickell S, et al. Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11943-7. doi: 10.1073/pnas.0905081106. Epub 2009 Jul 6. Proc Natl Acad Sci U S A. 2009. PMID: 19581588 Free PMC article.