GATEWAY vectors for Agrobacterium-mediated plant transformation - PubMed (original) (raw)
GATEWAY vectors for Agrobacterium-mediated plant transformation
Mansour Karimi et al. Trends Plant Sci. 2002 May.
Abstract
Agrobacterium tumefaciens is the preferred method for transformation of a wide range of plant species. Commonly, the genes to be transferred are cloned between the left and right T-DNA borders of so-called binary T-DNA vectors that can replicate both in E. coli and Agrobacterium. Because these vectors are generally large, cloning can be time-consuming and laborious. Recently, the GATEWAY conversion technology has provided a fast and reliable alternative to the cloning of sequences into large acceptor plasmids.
Similar articles
- Small high-yielding binary Ti vectors pLSU with co-directional replicons for Agrobacterium tumefaciens-mediated transformation of higher plants.
Lee S, Su G, Lasserre E, Aghazadeh MA, Murai N. Lee S, et al. Plant Sci. 2012 May;187:49-58. doi: 10.1016/j.plantsci.2012.01.012. Epub 2012 Feb 2. Plant Sci. 2012. PMID: 22404832 - Formation of complex extrachromosomal T-DNA structures in Agrobacterium tumefaciens-infected plants.
Singer K, Shiboleth YM, Li J, Tzfira T. Singer K, et al. Plant Physiol. 2012 Sep;160(1):511-22. doi: 10.1104/pp.112.200212. Epub 2012 Jul 13. Plant Physiol. 2012. PMID: 22797657 Free PMC article. - A plant transformation vector with a minimal T-DNA.
Düring K. Düring K. Transgenic Res. 1994 Mar;3(2):138-40. doi: 10.1007/BF01974093. Transgenic Res. 1994. PMID: 8193640 - Binary vectors and super-binary vectors.
Komari T, Takakura Y, Ueki J, Kato N, Ishida Y, Hiei Y. Komari T, et al. Methods Mol Biol. 2006;343:15-41. doi: 10.1385/1-59745-130-4:15. Methods Mol Biol. 2006. PMID: 16988331 Review. - Higher plant transformation: principles and molecular tools.
Anami S, Njuguna E, Coussens G, Aesaert S, Van Lijsebettens M. Anami S, et al. Int J Dev Biol. 2013;57(6-8):483-94. doi: 10.1387/ijdb.130232mv. Int J Dev Biol. 2013. PMID: 24166431 Review.
Cited by
- Mutation of GmIPK1 Gene Using CRISPR/Cas9 Reduced Phytic Acid Content in Soybean Seeds.
Song JH, Shin G, Kim HJ, Lee SB, Moon JY, Jeong JC, Choi HK, Kim IA, Song HJ, Kim CY, Chung YS. Song JH, et al. Int J Mol Sci. 2022 Sep 13;23(18):10583. doi: 10.3390/ijms231810583. Int J Mol Sci. 2022. PMID: 36142495 Free PMC article. - Characterisation of the late blight resistance in potato differential MaR9 reveals a qualitative resistance gene, R9a, residing in a cluster of Tm-2 (2) homologs on chromosome IX.
Jo KR, Visser RG, Jacobsen E, Vossen JH. Jo KR, et al. Theor Appl Genet. 2015 May;128(5):931-41. doi: 10.1007/s00122-015-2480-6. Epub 2015 Mar 1. Theor Appl Genet. 2015. PMID: 25725999 Free PMC article. - A stress-inducible protein regulates drought tolerance and flowering time in Brachypodium and Arabidopsis.
Ying S, Scheible WR, Lundquist PK. Ying S, et al. Plant Physiol. 2023 Jan 2;191(1):643-659. doi: 10.1093/plphys/kiac486. Plant Physiol. 2023. PMID: 36264121 Free PMC article. - To stripe or not to stripe: the origin of a novel foliar pigmentation pattern in monkeyflowers (Mimulus).
LaFountain AM, McMahon HE, Reid NM, Yuan YW. LaFountain AM, et al. New Phytol. 2023 Jan;237(1):310-322. doi: 10.1111/nph.18486. Epub 2022 Oct 5. New Phytol. 2023. PMID: 36101514 Free PMC article. - Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato.
Mazier M, Flamain F, Nicolaï M, Sarnette V, Caranta C. Mazier M, et al. PLoS One. 2011;6(12):e29595. doi: 10.1371/journal.pone.0029595. Epub 2011 Dec 29. PLoS One. 2011. PMID: 22242134 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources