Toxicological and cytophysiological aspects of lanthanides action - PubMed (original) (raw)
Affiliations
- PMID: 11996100
Review
Toxicological and cytophysiological aspects of lanthanides action
A Pałasz et al. Acta Biochim Pol. 2000.
Abstract
Lanthanides, also called rare-earth elements, are an interesting group of 15 chemically active, mainly trivalent, f-electronic, silvery-white metals. In fact, lanthanides are not as rare as the name implies, except for promethium, a radioactive artificial element not found in nature. The mean concentrations of lanthanides in the earth's crust are comparable to those of life-important elements like iodine, cobalt and selenium. Many lanthanide compounds show particular magnetic, catalytic and optic properties, and that is why their technical applications are so extensive. Numerous industrial sources enable lanthanides to penetrate into the human body and therefore detailed toxicological studies of these metals are necessary. In the liver, gadolinium selectively inhibits secretion by Kupffer cells and it decreases cytochrome P450 activity in hepatocytes, thereby protecting liver cells against toxic products of xenobiotic biotransformation. Praseodymium ion (Pr3+) produces the same protective effect in liver tissue cultures. Cytophysiological effects of lanthanides appear to result from the similarity of their cationic radii to the size of Ca2+ ions. Trivalent lanthanide ions, especially La3+ and Gd3+, block different calcium channels in human and animal cells. Lanthanides can affect numerous enzymes: Dy3+ and La3+ block Ca2+-ATPase and Mg2+-ATPase, while Eu3+ and Tb3+ inhibit calcineurin. In neurons, lanthanide ions regulate the transport and release of synaptic transmitters and block some membrane receptors, e.g. GABA and glutamate receptors. It is likely that lanthanides significantly and uniquely affect biochemical pathways, thus altering physiological processes in the tissues of humans and animals.
Similar articles
- Molecular neurochemistry of the lanthanides.
Pałasz A, Segovia Y, Skowronek R, Worthington JJ. Pałasz A, et al. Synapse. 2019 Sep;73(9):e22119. doi: 10.1002/syn.22119. Epub 2019 Jun 22. Synapse. 2019. PMID: 31172594 Review. - Biological toxicity of lanthanide elements on algae.
Tai P, Zhao Q, Su D, Li P, Stagnitti F. Tai P, et al. Chemosphere. 2010 Aug;80(9):1031-5. doi: 10.1016/j.chemosphere.2010.05.030. Epub 2010 Jun 14. Chemosphere. 2010. PMID: 20547408 - Environmental fate and ecotoxicity of lanthanides: are they a uniform group beyond chemistry?
Gonzalez V, Vignati DA, Leyval C, Giamberini L. Gonzalez V, et al. Environ Int. 2014 Oct;71:148-57. doi: 10.1016/j.envint.2014.06.019. Epub 2014 Jul 15. Environ Int. 2014. PMID: 25036616 Review. - Inhibition of chloride outward transport by gadolinium in cultured rat spinal cord neurons.
Ishibashi H, Hirao K, Yamaguchi J, Nabekura J. Ishibashi H, et al. Neurotoxicology. 2009 Jan;30(1):155-9. doi: 10.1016/j.neuro.2008.10.003. Epub 2008 Oct 22. Neurotoxicology. 2009. PMID: 19007810 - Synthesis and structural properties of lanthanide complexes formed with tropolonate ligands.
Zhang J, Badger PD, Geib SJ, Petoud S. Zhang J, et al. Inorg Chem. 2007 Aug 6;46(16):6473-82. doi: 10.1021/ic7005343. Epub 2007 Jul 10. Inorg Chem. 2007. PMID: 17622139
Cited by
- Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines.
Thomsen HS, Morcos SK, Almén T, Bellin MF, Bertolotto M, Bongartz G, Clement O, Leander P, Heinz-Peer G, Reimer P, Stacul F, van der Molen A, Webb JA; ESUR Contrast Medium Safety Committee. Thomsen HS, et al. Eur Radiol. 2013 Feb;23(2):307-18. doi: 10.1007/s00330-012-2597-9. Epub 2012 Aug 4. Eur Radiol. 2013. PMID: 22865271 Review. - Gadolinium modifies the cell membrane to inhibit permeabilization by nanosecond electric pulses.
Gianulis EC, Pakhomov AG. Gianulis EC, et al. Arch Biochem Biophys. 2015 Mar 15;570:1-7. doi: 10.1016/j.abb.2015.02.013. Epub 2015 Feb 21. Arch Biochem Biophys. 2015. PMID: 25707556 Free PMC article. - Lanthanide conjugate Pr-MPO elicits anti-cancer activity by targeting lysosomal machinery and inducing zinc-dependent cataplerosis.
Bellot GL, Liu D, Fivaz M, Yadav SK, Kaur C, Pervaiz S. Bellot GL, et al. Cell Commun Signal. 2024 Oct 19;22(1):509. doi: 10.1186/s12964-024-01883-5. Cell Commun Signal. 2024. PMID: 39427179 Free PMC article. - Kupffer cells modulate iron homeostasis in mice via regulation of hepcidin expression.
Theurl M, Theurl I, Hochegger K, Obrist P, Subramaniam N, van Rooijen N, Schuemann K, Weiss G. Theurl M, et al. J Mol Med (Berl). 2008 Jul;86(7):825-35. doi: 10.1007/s00109-008-0346-y. Epub 2008 Jun 3. J Mol Med (Berl). 2008. PMID: 18521557
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Miscellaneous