Development and mapping of SSR markers for maize - PubMed (original) (raw)
. 2002 Mar-Apr;48(5-6):463-81.
doi: 10.1023/a:1014868625533.
Michael D McMullen, Linda Schultz, Steve Schroeder, Hector Sanchez-Villeda, Jack Gardiner, Dean Bergstrom, Katherine Houchins, Susan Melia-Hancock, Theresa Musket, Ngozi Duru, Mary Polacco, Keith Edwards, Thomas Ruff, James C Register, Cory Brouwer, Richard Thompson, Riccardo Velasco, Emily Chin, Michael Lee, Wendy Woodman-Clikeman, Mary Jane Long, Emmanuel Liscum, Karen Cone, Georgia Davis, Edward H Coe Jr
Affiliations
- PMID: 12004892
- DOI: 10.1023/a:1014868625533
Development and mapping of SSR markers for maize
Natalya Sharopova et al. Plant Mol Biol. 2002 Mar-Apr.
Abstract
Microsatellite or simple sequence repeat (SSR) markers have wide applicability for genetic analysis in crop plant improvement strategies. The objectives of this project were to isolate, characterize, and map a comprehensive set of SSR markers for maize (Zea mays L.). We developed 1051 novel SSR markers for maize from microsatellite-enriched libraries and by identification of microsatellite-containing sequences in public and private databases. Three mapping populations were used to derive map positions for 978 of these markers. The main mapping population was the intermated B73 x Mo17 (IBM) population. In mapping this intermated recombinant inbred line population, we have contributed to development of a new high-resolution map resource for maize. The primer sequences, original sequence sources, data on polymorphisms across 11 inbred lines, and map positions have been integrated with information on other public SSR markers and released through MaizeDB at URL:www.agron.missouri.edu. The maize research community now has the most detailed and comprehensive SSR marker set of any plant species.
Similar articles
- High segregation distortion in maize B73 x teosinte crosses.
Wang G, He QQ, Xu ZK, Song RT. Wang G, et al. Genet Mol Res. 2012 Mar 19;11(1):693-706. doi: 10.4238/2012.March.19.3. Genet Mol Res. 2012. PMID: 22535405 - Genetic dissection of intermated recombinant inbred lines using a new genetic map of maize.
Fu Y, Wen TJ, Ronin YI, Chen HD, Guo L, Mester DI, Yang Y, Lee M, Korol AB, Ashlock DA, Schnable PS. Fu Y, et al. Genetics. 2006 Nov;174(3):1671-83. doi: 10.1534/genetics.106.060376. Epub 2006 Sep 1. Genetics. 2006. PMID: 16951074 Free PMC article. - Expanding the genetic map of maize with the intermated B73 x Mo17 (IBM) population.
Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A. Lee M, et al. Plant Mol Biol. 2002 Mar-Apr;48(5-6):453-61. doi: 10.1023/a:1014893521186. Plant Mol Biol. 2002. PMID: 11999829 - Molecular mapping of genes for opposite leafing in maize using simple-sequence repeat markers.
Tan YQ, Xie CX, Jiang HY, Ye H, Xiang Y, Zhu SW, Cheng BJ. Tan YQ, et al. Genet Mol Res. 2011 Nov 22;10(4):3472-9. doi: 10.4238/2011.November.22.3. Genet Mol Res. 2011. PMID: 22179993 - Distributed simple sequence repeat markers for efficient mapping from maize public mutagenesis populations.
Martin F, Dailey S, Settles AM. Martin F, et al. Theor Appl Genet. 2010 Aug;121(4):697-704. doi: 10.1007/s00122-010-1341-6. Epub 2010 Apr 18. Theor Appl Genet. 2010. PMID: 20401644
Cited by
- Genomics-Integrated Breeding for Carotenoids and Folates in Staple Cereal Grains to Reduce Malnutrition.
Ashokkumar K, Govindaraj M, Karthikeyan A, Shobhana VG, Warkentin TD. Ashokkumar K, et al. Front Genet. 2020 May 29;11:414. doi: 10.3389/fgene.2020.00414. eCollection 2020. Front Genet. 2020. PMID: 32547594 Free PMC article. Review. - De novo characterization of fall dormant and nondormant alfalfa (Medicago sativa L.) leaf transcriptome and identification of candidate genes related to fall dormancy.
Zhang S, Shi Y, Cheng N, Du H, Fan W, Wang C. Zhang S, et al. PLoS One. 2015 Mar 23;10(3):e0122170. doi: 10.1371/journal.pone.0122170. eCollection 2015. PLoS One. 2015. PMID: 25799491 Free PMC article. - Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps.
Mun JH, Kim DJ, Choi HK, Gish J, Debellé F, Mudge J, Denny R, Endré G, Saurat O, Dudez AM, Kiss GB, Roe B, Young ND, Cook DR. Mun JH, et al. Genetics. 2006 Apr;172(4):2541-55. doi: 10.1534/genetics.105.054791. Epub 2006 Feb 19. Genetics. 2006. PMID: 16489220 Free PMC article. - Meiotic crossovers characterized by haplotype-specific chromosome painting in maize.
do Vale Martins L, Yu F, Zhao H, Dennison T, Lauter N, Wang H, Deng Z, Thompson A, Semrau K, Rouillard JM, Birchler JA, Jiang J. do Vale Martins L, et al. Nat Commun. 2019 Oct 10;10(1):4604. doi: 10.1038/s41467-019-12646-z. Nat Commun. 2019. PMID: 31601818 Free PMC article. - Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization.
Yim YS, Davis GL, Duru NA, Musket TA, Linton EW, Messing JW, McMullen MD, Soderlund CA, Polacco ML, Gardiner JM, Coe EH Jr. Yim YS, et al. Plant Physiol. 2002 Dec;130(4):1686-96. doi: 10.1104/pp.013474. Plant Physiol. 2002. PMID: 12481051 Free PMC article.
References
- Genetics. 1998 May;149(1):319-27 - PubMed
- Genetics. 1996 Dec;144(4):1883-91 - PubMed
- Genetics. 1996 Jan;142(1):247-58 - PubMed
- Nature. 1986 Aug 14-20;322(6080):652-6 - PubMed
- Nature. 1996 Mar 14;380(6570):152-4 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources