Analysis of the myoglobin gene in Tibetans living at high altitude - PubMed (original) (raw)
Comparative Study
. 2002 Spring;3(1):39-47.
doi: 10.1089/152702902753639531.
Affiliations
- PMID: 12006163
- DOI: 10.1089/152702902753639531
Comparative Study
Analysis of the myoglobin gene in Tibetans living at high altitude
Lorna G Moore et al. High Alt Med Biol. 2002 Spring.
Abstract
Myoglobin, a protein with an important role in muscle oxidative metabolism, is increased in high altitude residents. In the closely related hemoglobins, mutations cause or contribute to human disease. Furthermore, heme-containing proteins may be involved in oxygen sensing. We therefore tested the hypotheses that myoglobin allele frequencies differed in Tibetans, a long-resident human high-altitude population, compared with sea-level residents, and varied in relation to altitude among Tibetans. We obtained the sequence of exon 2 of the myoglobin gene in 146 Tibetans with greater than three generations of stable residence at altitude in rural Tibet. We compared the frequency of known polymorphic sites in this gene among Tibetans living at altitudes of 3000, 3700, and 4500 m and to allele frequencies previously obtained in 525 residents of Dallas, Texas. We also examined the association between different myoglobin genotypes and hemoglobin concentration, used as an index of myoglobin levels. The frequency of the myoglobin 79A allele was higher in the high altitude compared with the sea-level residents, but unchanged with increasing altitude among Tibetans. There was no significant deviation from Hardy-Weinberg equilibrium in any of the Tibetan altitude groups, nor was there any association between myoglobin genotype and hemoglobin concentration. Screening of exon 2 of the myoglobin gene in high altitude Tibetans does not show novel polymorphism or selection for specific myoglobin alleles as a function of altitude of residence or hypoxic challenge.
Similar articles
- HMOX2 Functions as a Modifier Gene for High-Altitude Adaptation in Tibetans.
Yang D, Peng Y, Ouzhuluobu, Bianbazhuoma, Cui C, Bianba, Wang L, Xiang K, He Y, Zhang H, Zhang X, Liu J, Shi H, Pan Y, Duojizhuoma, Dejiquzong, Cirenyangji, Baimakangzhuo, Gonggalanzi, Liu S, Gengdeng, Wu T, Chen H, Qi X, Su B. Yang D, et al. Hum Mutat. 2016 Feb;37(2):216-23. doi: 10.1002/humu.22935. Epub 2015 Dec 14. Hum Mutat. 2016. PMID: 26781569 - New aspects of altitude adaptation in Tibetans: a proteomic approach.
Gelfi C, De Palma S, Ripamonti M, Eberini I, Wait R, Bajracharya A, Marconi C, Schneider A, Hoppeler H, Cerretelli P. Gelfi C, et al. FASEB J. 2004 Mar;18(3):612-4. doi: 10.1096/fj.03-1077fje. Epub 2004 Jan 20. FASEB J. 2004. PMID: 14734630 - Identification of a Tibetan-specific mutation in the hypoxic gene EGLN1 and its contribution to high-altitude adaptation.
Xiang K, Ouzhuluobu, Peng Y, Yang Z, Zhang X, Cui C, Zhang H, Li M, Zhang Y, Bianba, Gonggalanzi, Basang, Ciwangsangbu, Wu T, Chen H, Shi H, Qi X, Su B. Xiang K, et al. Mol Biol Evol. 2013 Aug;30(8):1889-98. doi: 10.1093/molbev/mst090. Epub 2013 May 10. Mol Biol Evol. 2013. PMID: 23666208 - Adaptive genetic changes related to haemoglobin concentration in native high-altitude Tibetans.
Simonson TS, Huff CD, Witherspoon DJ, Prchal JT, Jorde LB. Simonson TS, et al. Exp Physiol. 2015 Nov;100(11):1263-8. doi: 10.1113/EP085035. Exp Physiol. 2015. PMID: 26454145 Review. - Tibetan and Andean patterns of adaptation to high-altitude hypoxia.
Beall CM. Beall CM. Hum Biol. 2000 Feb;72(1):201-28. Hum Biol. 2000. PMID: 10721618 Review.
Cited by
- Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data.
Bigham A, Bauchet M, Pinto D, Mao X, Akey JM, Mei R, Scherer SW, Julian CG, Wilson MJ, López Herráez D, Brutsaert T, Parra EJ, Moore LG, Shriver MD. Bigham A, et al. PLoS Genet. 2010 Sep 9;6(9):e1001116. doi: 10.1371/journal.pgen.1001116. PLoS Genet. 2010. PMID: 20838600 Free PMC article. - Convergent changes in muscle metabolism depend on duration of high-altitude ancestry across Andean waterfowl.
Dawson NJ, Alza L, Nandal G, Scott GR, McCracken KG. Dawson NJ, et al. Elife. 2020 Jul 30;9:e56259. doi: 10.7554/eLife.56259. Elife. 2020. PMID: 32729830 Free PMC article. - Identifying positive selection candidate loci for high-altitude adaptation in Andean populations.
Bigham AW, Mao X, Mei R, Brutsaert T, Wilson MJ, Julian CG, Parra EJ, Akey JM, Moore LG, Shriver MD. Bigham AW, et al. Hum Genomics. 2009 Dec;4(2):79-90. doi: 10.1186/1479-7364-4-2-79. Hum Genomics. 2009. PMID: 20038496 Free PMC article. - Physiology, pathophysiology and (mal)adaptations to chronic apnoeic training: a state-of-the-art review.
Elia A, Gennser M, Harlow PS, Lees MJ. Elia A, et al. Eur J Appl Physiol. 2021 Jun;121(6):1543-1566. doi: 10.1007/s00421-021-04664-x. Epub 2021 Mar 31. Eur J Appl Physiol. 2021. PMID: 33791844 Free PMC article. Review. - The impact of COVID-19 on populations living at high altitude: Role of hypoxia-inducible factors (HIFs) signaling pathway in SARS-CoV-2 infection and replication.
Devaux CA, Raoult D. Devaux CA, et al. Front Physiol. 2022 Aug 25;13:960308. doi: 10.3389/fphys.2022.960308. eCollection 2022. Front Physiol. 2022. PMID: 36091390 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources