Determination of the physical environment within the Chlamydia trachomatis inclusion using ion-selective ratiometric probes - PubMed (original) (raw)

Determination of the physical environment within the Chlamydia trachomatis inclusion using ion-selective ratiometric probes

Scott Grieshaber et al. Cell Microbiol. 2002 May.

Free article

Abstract

Chlamydia trachomatis is an obligate intracellular bacterium with a biphasic life cycle that takes place entirely within a membrane-bound vacuole termed an inclusion. The chlamydial inclusion is non-fusogenic with endosomal or lysosomal compartments but intersects a pathway involved in transport of sphingomyelin from the Golgi apparatus to the plasma membrane. The physical conditions within the mature chlamydial inclusion are unknown. We used ratiometric imaging with membrane-permeant, ion-selective fluorescent dyes for microanalyis of the physical environment within the inclusion. Determination of H+, Na+, K+ and Ca(2+) concentrations using CFDA (carboxy fluorescein diacetate) or BCECF-AM (2',7'-bis (2-carboxyethyl)-5,6-carboxyfluorescein acetoxymethyl ester, SBFI-AM, PBFI-AM and fura-PE3-acetomethoxyester (Fura-PE3-AM), respectively, indicated that all ions assayed within the lumenal space of the inclusion approximated the concentrations within the cytoplasm. Stimulation of purinergic receptors by addition of extracellular ATP triggered a dynamic Ca(2+) response that occurred simultaneously within the cytoplasm and interior of the inclusion. The chlamydial inclusion thus appears to be freely permeable to cytoplasmic ions. These results have implications for nutrient acquisition by chlamydiae and may contribute to the non-fusogenicity of the inclusion with endocytic compartments.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources