Photoprotective potential of lycopene, beta-carotene, vitamin E, vitamin C and carnosic acid in UVA-irradiated human skin fibroblasts - PubMed (original) (raw)

Photoprotective potential of lycopene, beta-carotene, vitamin E, vitamin C and carnosic acid in UVA-irradiated human skin fibroblasts

Elizabeth A Offord et al. Free Radic Biol Med. 2002.

Abstract

The photoprotective potential of the dietary antioxidants vitamin C, vitamin E, lycopene, beta-carotene, and the rosemary polyphenol, carnosic acid, was tested in human dermal fibroblasts exposed to ultraviolet-A (UVA) light. The carotenoids were prepared in special nanoparticle formulations together with vitamin C and/or vitamin E. Nanoparticle formulations, in contrast to dimethylsulphoxide, stablized lycopene in the cell culture medium and allowed efficient cellular uptake. The presence of vitamin E in the formulation further increased the stability and cellular uptake of lycopene. UVA irradiation of the human skin fibroblasts led to a 10-15-fold rise in metalloproteinase 1 (MMP-1) mRNA. This rise was suppressed in the presence of low microM concentrations of vitamin E, vitamin C, or carnosic acid but not with beta-carotene or lycopene. Indeed, in the presence of 0.5-1.0 microM beta-carotene or lycopene, the UVA-induced MMP-1 mRNA was further increased by 1.5-2-fold. This increase was totally suppressed when vitamin E was included in the nanoparticle formulation. Heme-oxygenase 1 (HO-1) mRNA expression was strongly induced by UVA irradiation but none of the antioxidants inhibited this effect at the concentrations used in this study. Indeed, beta-carotene or lycopene (0.5-1.0 microM) led to a further 1.5-fold rise in the UVA-induced HO-1 mRNA levels. In conclusion, vitamin C, vitamin E, and carnosic acid showed photoprotective potential. Lycopene and beta-carotene did not protect on their own but in the presence of vitamin E, their stability in culture was improved and the rise in MMP-1 mRNA expression was suppressed, suggesting a requirement for antioxidant protection of the carotenoids against formation of oxidative derivatives that can influence the cellular and molecular responses.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources