Transposable elements and the evolution of eukaryotic complexity - PubMed (original) (raw)
Affiliations
- PMID: 12074196
Free article
Review
Transposable elements and the evolution of eukaryotic complexity
Nathan J Bowen et al. Curr Issues Mol Biol. 2002 Jul.
Free article
Abstract
Eukaryotic transposable elements are ubiquitous and widespread mobile genetic entities. These elements often make up a substantial fraction of the host genomes in which they reside. For example, approximately 1/2 of the human genome was recently shown to consist of transposable element sequences. There is a growing body of evidence that demonstrates that transposable elements have been major players in genome evolution. A sample of this evidence is reviewed here with an emphasis on the role that transposable elements may have played in driving the evolution of eukaryotic complexity. A number of specific scenarios are presented that implicate transposable elements in the evolution of the complex molecular and cellular machinery that are characteristic of the eukaryotic domain of life.
Similar articles
- Transposable elements and factors influencing their success in eukaryotes.
Pritham EJ. Pritham EJ. J Hered. 2009 Sep-Oct;100(5):648-55. doi: 10.1093/jhered/esp065. Epub 2009 Aug 7. J Hered. 2009. PMID: 19666747 Free PMC article. Review. - Transposable elements.
Hayward A, Gilbert C. Hayward A, et al. Curr Biol. 2022 Sep 12;32(17):R904-R909. doi: 10.1016/j.cub.2022.07.044. Curr Biol. 2022. PMID: 36099891 - Diversity and evolution of transposable elements in Arabidopsis.
Joly-Lopez Z, Bureau TE. Joly-Lopez Z, et al. Chromosome Res. 2014 Jun;22(2):203-16. doi: 10.1007/s10577-014-9418-8. Chromosome Res. 2014. PMID: 24801342 Review. - A brief history of the status of transposable elements: from junk DNA to major players in evolution.
Biémont C. Biémont C. Genetics. 2010 Dec;186(4):1085-93. doi: 10.1534/genetics.110.124180. Genetics. 2010. PMID: 21156958 Free PMC article. - Hidden magicians of genome evolution.
Kumar CS, Qureshi SF, Ali A, Satyanarayana ML, Rangaraju A, Venkateshwari A, Nallari P. Kumar CS, et al. Indian J Med Res. 2013 Jun;137(6):1052-60. Indian J Med Res. 2013. PMID: 23852286 Free PMC article. Review.
Cited by
- High resolution genomes of multiple Xiphophorus species provide new insights into microevolution, hybrid incompatibility, and epistasis.
Lu Y, Rice E, Du K, Kneitz S, Naville M, Dechaud C, Volff JN, Boswell M, Boswell W, Hillier L, Tomlinson C, Milin K, Walter RB, Schartl M, Warren WC. Lu Y, et al. Genome Res. 2023 Apr;33(4):557-571. doi: 10.1101/gr.277434.122. Epub 2023 May 5. Genome Res. 2023. PMID: 37147111 Free PMC article. - Comparison of Auxenochlorella protothecoides and Chlorella spp. Chloroplast Genomes: Evidence for Endosymbiosis and Horizontal Virus-like Gene Transfer.
Park SH, Kyndt JA, Brown JK. Park SH, et al. Life (Basel). 2022 Mar 20;12(3):458. doi: 10.3390/life12030458. Life (Basel). 2022. PMID: 35330209 Free PMC article. - Unraveling the Genome Sequence of Plant Growth Promoting Aspergillus niger (CSR3) Provides Insight into the Synthesis of Secondary Metabolites and Its Comparative Genomics.
Lubna, Asaf S, Jan R, Khan AL, Bilal S, Asif S, Al-Harrasi A, Kim KM. Lubna, et al. J Fungi (Basel). 2022 Jan 24;8(2):107. doi: 10.3390/jof8020107. J Fungi (Basel). 2022. PMID: 35205861 Free PMC article. - Transposable Elements Contribute to Genome Dynamics and Gene Expression Variation in the Fungal Plant Pathogen Verticillium dahliae.
Torres DE, Thomma BPHJ, Seidl MF. Torres DE, et al. Genome Biol Evol. 2021 Jul 6;13(7):evab135. doi: 10.1093/gbe/evab135. Genome Biol Evol. 2021. PMID: 34100895 Free PMC article. - Identification of a genome-specific repetitive element in the Gossypium D genome.
Lu H, Cui X, Zhao Y, Magwanga RO, Li P, Cai X, Zhou Z, Wang X, Liu Y, Xu Y, Hou Y, Peng R, Wang K, Liu F. Lu H, et al. PeerJ. 2020 Jan 3;8:e8344. doi: 10.7717/peerj.8344. eCollection 2020. PeerJ. 2020. PMID: 31915591 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources