Dynamic regulation of GABA(A) receptors at synaptic sites - PubMed (original) (raw)
Review
Dynamic regulation of GABA(A) receptors at synaptic sites
Matthias Kneussel. Brain Res Brain Res Rev. 2002 Jun.
Abstract
gamma-Aminobutyric acid type A receptors (GABA(A)Rs) mediate fast synaptic inhibition in brain and spinal cord. They are ligand-gated ion channels composed of numerous distinct subunit combinations. For efficient synaptic transmission, GABA(A)Rs need to be localized to and anchored at postsynaptic sites in precise apposition to presynaptic nerve terminals that release the neurotransmitter GABA. Neurons therefore require distinct mechanisms to regulate intracellular vesicular protein traffic, plasma membrane insertion, synaptic clustering and turnover of GABA(A)Rs. The GABA(A) receptor-associated protein GABARAP interacts with the gamma2 subunit of GABA(A)Rs and displays high homology to proteins involved in membrane fusion underlying Golgi transport and autophagic processes. The binding of GABARAP with NSF, microtubules and gephyrin together with its localization at intracellular membranes suggests a role in GABA(A)R targeting and/or degradation. Growth factor tyrosine kinase receptor activation is involved in the control of GABA(A)R levels at the plasma membrane. In particular insulin recruits GABA(A)Rs to the cell surface. Furthermore, the regulation of GABA(A)R surface half-life can also be the consequence of negative modulation at the proteasome level. Plic-1, a ubiquitin-like protein binds to both the proteasome and GABA(A)Rs and the Plic1-GABA(A)R interaction is important for the maintenance of GABA-activated current amplitudes. At synaptic sites, GABA(A)Rs are clustered via gephyrin-dependent and gephyrin-independent mechanisms and may subsequently become internalized via clathrin-mediated endocytosis underlying receptor recycling or degradation processes. This article discusses these recent data in the field of GABA(A)R dynamics.
Similar articles
- The gamma-aminobutyric acid type A receptor (GABAAR)-associated protein GABARAP interacts with gephyrin but is not involved in receptor anchoring at the synapse.
Kneussel M, Haverkamp S, Fuhrmann JC, Wang H, Wässle H, Olsen RW, Betz H. Kneussel M, et al. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8594-9. doi: 10.1073/pnas.97.15.8594. Proc Natl Acad Sci U S A. 2000. PMID: 10900017 Free PMC article. - GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton.
Wang H, Bedford FK, Brandon NJ, Moss SJ, Olsen RW. Wang H, et al. Nature. 1999 Jan 7;397(6714):69-72. doi: 10.1038/16264. Nature. 1999. PMID: 9892355 - The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABA(A) receptors.
Kittler JT, Rostaing P, Schiavo G, Fritschy JM, Olsen R, Triller A, Moss SJ. Kittler JT, et al. Mol Cell Neurosci. 2001 Jul;18(1):13-25. doi: 10.1006/mcne.2001.1005. Mol Cell Neurosci. 2001. PMID: 11461150 - GABARAP: lessons for synaptogenesis.
Coyle JE, Nikolov DB. Coyle JE, et al. Neuroscientist. 2003 Jun;9(3):205-16. doi: 10.1177/1073858403009003013. Neuroscientist. 2003. PMID: 15065816 Review. - TRP Channel Trafficking.
Planells-Cases R, Ferrer-Montiel A. Planells-Cases R, et al. In: Liedtke WB, Heller S, editors. TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. Boca Raton (FL): CRC Press/Taylor & Francis; 2007. Chapter 23. In: Liedtke WB, Heller S, editors. TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. Boca Raton (FL): CRC Press/Taylor & Francis; 2007. Chapter 23. PMID: 21204515 Free Books & Documents. Review.
Cited by
- Remifentanil administration reveals biphasic phMRI temporal responses in rat consistent with dynamic receptor regulation.
Liu CH, Greve DN, Dai G, Marota JJ, Mandeville JB. Liu CH, et al. Neuroimage. 2007 Feb 1;34(3):1042-53. doi: 10.1016/j.neuroimage.2006.10.028. Epub 2006 Dec 13. Neuroimage. 2007. PMID: 17169578 Free PMC article. - Running to stand still: ionotropic receptor dynamics at central and peripheral synapses.
Bruneau EG, Akaaboune M. Bruneau EG, et al. Mol Neurobiol. 2006 Oct;34(2):137-51. doi: 10.1385/MN:34:2:137. Mol Neurobiol. 2006. PMID: 17220535 Review. - Brain deletion of insulin receptor substrate 2 disrupts hippocampal synaptic plasticity and metaplasticity.
Costello DA, Claret M, Al-Qassab H, Plattner F, Irvine EE, Choudhury AI, Giese KP, Withers DJ, Pedarzani P. Costello DA, et al. PLoS One. 2012;7(2):e31124. doi: 10.1371/journal.pone.0031124. Epub 2012 Feb 27. PLoS One. 2012. PMID: 22383997 Free PMC article. - Phosphatidylinositol 4,5-bisphosphate induced flunitrazepam sensitive-GABAA receptor increase in synaptosomes from chick forebrain.
Cid MP, Salvatierra NA, Arce A. Cid MP, et al. Neurochem Res. 2007 Jun;32(6):1011-5. doi: 10.1007/s11064-006-9261-1. Epub 2007 Mar 31. Neurochem Res. 2007. PMID: 17401677 - N-ethylmaleimide-sensitive factor interacts with the serotonin transporter and modulates its trafficking: implications for pathophysiology in autism.
Iwata K, Matsuzaki H, Tachibana T, Ohno K, Yoshimura S, Takamura H, Yamada K, Matsuzaki S, Nakamura K, Tsuchiya KJ, Matsumoto K, Tsujii M, Sugiyama T, Katayama T, Mori N. Iwata K, et al. Mol Autism. 2014 May 10;5:33. doi: 10.1186/2040-2392-5-33. eCollection 2014. Mol Autism. 2014. PMID: 24834316 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases