Induced disruption of the transforming growth factor beta type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable - PubMed (original) (raw)
. 2002 Jul 15;100(2):560-8.
doi: 10.1182/blood.v100.2.560.
Affiliations
- PMID: 12091349
- DOI: 10.1182/blood.v100.2.560
Free article
Induced disruption of the transforming growth factor beta type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable
Per Levéen et al. Blood. 2002.
Free article
Abstract
Recent studies in mouse models deficient in transforming growth factor beta (TGF-beta) signaling have documented TGF-beta as one of the major regulators of immune function. TGF-beta1-null animals demonstrated massive autoimmune inflammation affecting multiple organs, but attempts to transfer the phenotype to normal animals by bone marrow transplantation only resulted in minor inflammatory lesions. We wanted to ask whether a lethal inflammatory phenotype would develop following transplantation of bone marrow deficient for the TGF-beta type II receptor (TbetaRII) gene to normal recipient animals. The TbetaRII-null mutation would generate a cell autonomous phenotype that cannot be reverted by the influence of endocrine or paracrine TGF-beta derived from the recipient animal. We have generated conditional knockout mice in which the TbetaRII gene is disrupted upon induction with interferon-alphabeta or polyI:polyC. We show that induction of TbetaRII gene disruption in these mice by polyI:polyC results in a lethal inflammatory disease. Importantly, bone marrow from conditional knockout mice transferred to normal recipent mice caused a similar lethal inflammation, regardless of whether induction of TGF-beta receptor deficiency occurred in donor animals before, or in recipient animals after transplantation. These results show that TGF-beta signaling deficiency within cells of hematopoietic origin is sufficient to cause a lethal inflammatory disorder in mice. This animal model provides an important tool to further clarify the pathogenic mechanisms in animals deficient for TGF-beta signaling and the importance of TGF-beta to regulate immune functions.
Similar articles
- TGF-beta type II receptor-deficient thymocytes develop normally but demonstrate increased CD8+ proliferation in vivo.
Levéen P, Carlsén M, Makowska A, Oddsson S, Larsson J, Goumans MJ, Cilio CM, Karlsson S. Levéen P, et al. Blood. 2005 Dec 15;106(13):4234-40. doi: 10.1182/blood-2005-05-1871. Epub 2005 Aug 30. Blood. 2005. PMID: 16131565 - Menin expression is regulated by transforming growth factor beta signaling in leukemia cells.
Zhang H, Liu ZG, Hua XX. Zhang H, et al. Chin Med J (Engl). 2011 May;124(10):1556-62. Chin Med J (Engl). 2011. PMID: 21740816 - Reconstitution of lethally irradiated adult mice with dominant negative TGF-beta type II receptor-transduced bone marrow leads to myeloid expansion and inflammatory disease.
Shah AH, Tabayoyong WB, Kimm SY, Kim SJ, Van Parijs L, Lee C. Shah AH, et al. J Immunol. 2002 Oct 1;169(7):3485-91. doi: 10.4049/jimmunol.169.7.3485. J Immunol. 2002. PMID: 12244137 - Hereditary hemorrhagic telangiectasia, a vascular dysplasia affecting the TGF-beta signaling pathway.
Fernández-L A, Sanz-Rodriguez F, Blanco FJ, Bernabéu C, Botella LM. Fernández-L A, et al. Clin Med Res. 2006 Mar;4(1):66-78. doi: 10.3121/cmr.4.1.66. Clin Med Res. 2006. PMID: 16595794 Free PMC article. Review. - TGF-betas and TGF-beta receptors in atherosclerosis.
McCaffrey TA. McCaffrey TA. Cytokine Growth Factor Rev. 2000 Mar-Jun;11(1-2):103-14. doi: 10.1016/s1359-6101(99)00034-9. Cytokine Growth Factor Rev. 2000. PMID: 10708958 Review.
Cited by
- Chromatin remodelling in damaged intestinal crypts orchestrates redundant TGFβ and Hippo signalling to drive regeneration.
Fink M, Njah K, Patel SJ, Cook DP, Man V, Ruso F, Rajan A, Narimatsu M, Obersterescu A, Pye MJ, Trcka D, Chan K, Ayyaz A, Wrana JL. Fink M, et al. Nat Cell Biol. 2024 Nov 15. doi: 10.1038/s41556-024-01550-4. Online ahead of print. Nat Cell Biol. 2024. PMID: 39548329 - Adult microglial TGFβ1 is required for microglia homeostasis via an autocrine mechanism to maintain cognitive function in mice.
Bedolla A, Wegman E, Weed M, Stevens MK, Ware K, Paranjpe A, Alkhimovitch A, Ifergan I, Taranov A, Peter JD, Gonzalez RMS, Robinson JE, McClain L, Roskin KM, Greig NH, Luo Y. Bedolla A, et al. Nat Commun. 2024 Jun 21;15(1):5306. doi: 10.1038/s41467-024-49596-0. Nat Commun. 2024. PMID: 38906887 Free PMC article. - Th17-to-Tfh plasticity during periodontitis limits disease pathology.
McClure FA, Wemyss K, Cox JR, Bridgeman HM, Prise IE, King JI, Jaigirdar S, Whelan A, Jones GW, Grainger JR, Hepworth MR, Konkel JE. McClure FA, et al. J Exp Med. 2024 Aug 5;221(8):e20232015. doi: 10.1084/jem.20232015. Epub 2024 May 31. J Exp Med. 2024. PMID: 38819409 Free PMC article. - Noninvasive Stratification of Colon Cancer by Multiplex PET Imaging.
Malviya G, Lannagan TRM, Johnson E, Mackintosh A, Bielik R, Peters A, Soloviev D, Brown G, Jackstadt R, Nixon C, Gilroy K, Campbell A, Sansom OJ, Lewis DY. Malviya G, et al. Clin Cancer Res. 2024 Apr 15;30(8):1518-1529. doi: 10.1158/1078-0432.CCR-23-1063. Clin Cancer Res. 2024. PMID: 38493804 Free PMC article. - TGF-β controls alveolar type 1 epithelial cell plasticity and alveolar matrisome gene transcription in mice.
Callaway DA, Penkala IJ, Zhou S, Knowlton JJ, Cardenas-Diaz F, Babu A, Morley MP, Lopes M, Garcia BA, Morrisey EE. Callaway DA, et al. J Clin Invest. 2024 Jan 11;134(6):e172095. doi: 10.1172/JCI172095. J Clin Invest. 2024. PMID: 38488000 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials