The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments - PubMed (original) (raw)

The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments

Jill A Cowing et al. Biochem J. 2002.

Abstract

The short-wave-sensitive (SWS) visual pigments of vertebrate cone photoreceptors are divided into two classes on the basis of molecular identity, SWS1 and SWS2. Only the SWS1 class are present in mammals. The SWS1 pigments can be further subdivided into violet-sensitive (VS), with lambda(max) (the peak of maximal absorbance) values generally between 400 and 430 nm, and ultraviolet-sensitive (UVS), with a lambda(max)<380 nm. Phylogenetic evidence indicates that the ancestral pigment was UVS and that VS pigments have evolved separately from UVS pigments in the different vertebrate lineages. In this study, we have examined the mechanism of evolution of VS pigments in the mammalian lineage leading to present day ungulates (cow and pig). Amino acid sequence comparisons of the UVS pigments of teleost fish, amphibia, reptiles and rodents show that site 86 is invariably occupied by Phe but is replaced in bovine and porcine VS pigments by Tyr. Using site-directed mutagenesis of goldfish UVS opsin, we have shown that a Phe-86-->Tyr substitution is sufficient by itself to shift the lambda(max) of the goldfish pigment from a wild-type value of 360 nm to around 420 nm, and the reverse substitution of Tyr-86-Phe into bovine VS opsin produces a similar shift in the opposite direction. The substitution of this single amino acid is sufficient to account therefore for the evolution of bovine and porcine VS pigments. The replacement of Phe with polar Tyr at site 86 is consistent with the stabilization of Schiff-base protonation in VS pigments and the absence of protonation in UVS pigments.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Genomics. 1995 Jun 10;27(3):535-8 - PubMed
    1. Genomics. 1994 May 15;21(2):440-3 - PubMed
    1. Vis Neurosci. 1997 Mar-Apr;14(2):225-32 - PubMed
    1. Biochem J. 1998 Feb 15;330 ( Pt 1):541-7 - PubMed
    1. Vision Res. 1998 Jan;38(1):37-44 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources