The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments - PubMed (original) (raw)
The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments
Jill A Cowing et al. Biochem J. 2002.
Abstract
The short-wave-sensitive (SWS) visual pigments of vertebrate cone photoreceptors are divided into two classes on the basis of molecular identity, SWS1 and SWS2. Only the SWS1 class are present in mammals. The SWS1 pigments can be further subdivided into violet-sensitive (VS), with lambda(max) (the peak of maximal absorbance) values generally between 400 and 430 nm, and ultraviolet-sensitive (UVS), with a lambda(max)<380 nm. Phylogenetic evidence indicates that the ancestral pigment was UVS and that VS pigments have evolved separately from UVS pigments in the different vertebrate lineages. In this study, we have examined the mechanism of evolution of VS pigments in the mammalian lineage leading to present day ungulates (cow and pig). Amino acid sequence comparisons of the UVS pigments of teleost fish, amphibia, reptiles and rodents show that site 86 is invariably occupied by Phe but is replaced in bovine and porcine VS pigments by Tyr. Using site-directed mutagenesis of goldfish UVS opsin, we have shown that a Phe-86-->Tyr substitution is sufficient by itself to shift the lambda(max) of the goldfish pigment from a wild-type value of 360 nm to around 420 nm, and the reverse substitution of Tyr-86-Phe into bovine VS opsin produces a similar shift in the opposite direction. The substitution of this single amino acid is sufficient to account therefore for the evolution of bovine and porcine VS pigments. The replacement of Phe with polar Tyr at site 86 is consistent with the stabilization of Schiff-base protonation in VS pigments and the absence of protonation in UVS pigments.
Similar articles
- Spectral tuning of shortwave-sensitive visual pigments in vertebrates.
Hunt DM, Carvalho LS, Cowing JA, Parry JW, Wilkie SE, Davies WL, Bowmaker JK. Hunt DM, et al. Photochem Photobiol. 2007 Mar-Apr;83(2):303-10. doi: 10.1562/2006-06-27-IR-952. Photochem Photobiol. 2007. PMID: 17576346 Review. - The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments.
Carvalho LS, Cowing JA, Wilkie SE, Bowmaker JK, Hunt DM. Carvalho LS, et al. Mol Biol Evol. 2007 Aug;24(8):1843-52. doi: 10.1093/molbev/msm109. Epub 2007 Jun 7. Mol Biol Evol. 2007. PMID: 17556758 - A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment.
Parry JW, Poopalasundaram S, Bowmaker JK, Hunt DM. Parry JW, et al. Biochemistry. 2004 Jun 29;43(25):8014-20. doi: 10.1021/bi049478w. Biochemistry. 2004. PMID: 15209496 - Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates.
Hunt DM, Cowing JA, Wilkie SE, Parry JW, Poopalasundaram S, Bowmaker JK. Hunt DM, et al. Photochem Photobiol Sci. 2004 Aug;3(8):713-20. doi: 10.1039/b314693f. Epub 2004 Mar 22. Photochem Photobiol Sci. 2004. PMID: 15295625 Review. - The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
Deeb SS, Wakefield MJ, Tada T, Marotte L, Yokoyama S, Marshall Graves JA. Deeb SS, et al. Mol Biol Evol. 2003 Oct;20(10):1642-9. doi: 10.1093/molbev/msg181. Epub 2003 Jul 28. Mol Biol Evol. 2003. PMID: 12885969
Cited by
- Diversity and Evolution of Frog Visual Opsins: Spectral Tuning and Adaptation to Distinct Light Environments.
Schott RK, Fujita MK, Streicher JW, Gower DJ, Thomas KN, Loew ER, Bamba Kaya AG, Bittencourt-Silva GB, Guillherme Becker C, Cisneros-Heredia D, Clulow S, Davila M, Firneno TJ Jr, Haddad CFB, Janssenswillen S, Labisko J, Maddock ST, Mahony M, Martins RA, Michaels CJ, Mitchell NJ, Portik DM, Prates I, Roelants K, Roelke C, Tobi E, Woolfolk M, Bell RC. Schott RK, et al. Mol Biol Evol. 2024 Apr 2;41(4):msae049. doi: 10.1093/molbev/msae049. Mol Biol Evol. 2024. PMID: 38573520 Free PMC article. - Functional Duplication of the Short-Wavelength-Sensitive Opsin in Sea Snakes: Evidence for Reexpanded Color Sensitivity Following Ancestral Regression.
Rossetto IH, Sanders KL, Simões BF, Van Cao N, Ludington AJ. Rossetto IH, et al. Genome Biol Evol. 2023 Jul 3;15(7):evad107. doi: 10.1093/gbe/evad107. Genome Biol Evol. 2023. PMID: 37434309 Free PMC article. - The evolutionary history and spectral tuning of vertebrate visual opsins.
Hagen JFD, Roberts NS, Johnston RJ Jr. Hagen JFD, et al. Dev Biol. 2023 Jan;493:40-66. doi: 10.1016/j.ydbio.2022.10.014. Epub 2022 Nov 9. Dev Biol. 2023. PMID: 36370769 Free PMC article. Review. - An EvoDevo Study of Salmonid Visual Opsin Dynamics and Photopigment Spectral Sensitivity.
Eilertsen M, Davies WIL, Patel D, Barnes JE, Karlsen R, Mountford JK, Stenkamp DL, Patel JS, Helvik JV. Eilertsen M, et al. Front Neuroanat. 2022 Jul 11;16:945344. doi: 10.3389/fnana.2022.945344. eCollection 2022. Front Neuroanat. 2022. PMID: 35899127 Free PMC article. - Simultaneous Expression of UV and Violet SWS1 Opsins Expands the Visual Palette in a Group of Freshwater Snakes.
Hauzman E, Pierotti MER, Bhattacharyya N, Tashiro JH, Yovanovich CAM, Campos PF, Ventura DF, Chang BSW. Hauzman E, et al. Mol Biol Evol. 2021 Dec 9;38(12):5225-5240. doi: 10.1093/molbev/msab285. Mol Biol Evol. 2021. PMID: 34562092 Free PMC article.
References
- Genomics. 1995 Jun 10;27(3):535-8 - PubMed
- Genomics. 1994 May 15;21(2):440-3 - PubMed
- Vis Neurosci. 1997 Mar-Apr;14(2):225-32 - PubMed
- Biochem J. 1998 Feb 15;330 ( Pt 1):541-7 - PubMed
- Vision Res. 1998 Jan;38(1):37-44 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous