The unique biochemistry of methanogenesis - PubMed (original) (raw)
Review
The unique biochemistry of methanogenesis
Uwe Deppenmeier. Prog Nucleic Acid Res Mol Biol. 2002.
Abstract
Methanogenic archaea have an unusual type of metabolism because they use H2 + CO2, formate, methylated C1 compounds, or acetate as energy and carbon sources for growth. The methanogens produce methane as the major end product of their metabolism in a unique energy-generating process. The organisms received much attention because they catalyze the terminal step in the anaerobic breakdown of organic matter under sulfate-limiting conditions and are essential for both the recycling of carbon compounds and the maintenance of the global carbon flux on Earth. Furthermore, methane is an important greenhouse gas that directly contributes to climate changes and global warming. Hence, the understanding of the biochemical processes leading to methane formation are of major interest. This review focuses on the metabolic pathways of methanogenesis that are rather unique and involve a number of unusual enzymes and coenzymes. It will be shown how the previously mentioned substrates are converted to CH4 via the CO2-reducing, methylotrophic, or aceticlastic pathway. All catabolic processes finally lead to the formation of a mixed disulfide from coenzyme M and coenzyme B that functions as an electron acceptor of certain anaerobic respiratory chains. Molecular hydrogen, reduced coenzyme F420, or reduced ferredoxin are used as electron donors. The redox reactions as catalyzed by the membrane-bound electron transport chains are coupled to proton translocation across the cytoplasmic membrane. The resulting electrochemical proton gradient is the driving force for ATP synthesis as catalyzed by an A1A0-type ATP synthase. Other energy-transducing enzymes involved in methanogenesis are the membrane-integral methyltransferase and the formylmethanofuran dehydrogenase complex. The former enzyme is a unique, reversible sodium ion pump that couples methyl-group transfer with the transport of Na+ across the membrane. The formylmethanofuran dehydrogenase is a reversible ion pump that catalyzes formylation and deformylation of methanofuran. Furthermore, the review addresses questions related to the biochemical and genetic characteristics of the energy-transducing enzymes and to the mechanisms of ion translocation.
Similar articles
- Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens.
Welte C, Deppenmeier U. Welte C, et al. Biochim Biophys Acta. 2014 Jul;1837(7):1130-47. doi: 10.1016/j.bbabio.2013.12.002. Epub 2013 Dec 12. Biochim Biophys Acta. 2014. PMID: 24333786 Review. - Proton translocation in methanogens.
Welte C, Deppenmeier U. Welte C, et al. Methods Enzymol. 2011;494:257-80. doi: 10.1016/B978-0-12-385112-3.00013-5. Methods Enzymol. 2011. PMID: 21402219 - The bioenergetics of methanogenesis.
Daniels L, Sparling R, Sprott GD. Daniels L, et al. Biochim Biophys Acta. 1984 Sep 6;768(2):113-63. doi: 10.1016/0304-4173(84)90002-8. Biochim Biophys Acta. 1984. PMID: 6236847 Review. - Energetics of methanogenesis studied in vesicular systems.
Blaut M, Müller V, Gottschalk G. Blaut M, et al. J Bioenerg Biomembr. 1992 Dec;24(6):529-46. doi: 10.1007/BF00762346. J Bioenerg Biomembr. 1992. PMID: 1459985 Review. - Metabolism of methanogens.
Blaut M. Blaut M. Antonie Van Leeuwenhoek. 1994;66(1-3):187-208. doi: 10.1007/BF00871639. Antonie Van Leeuwenhoek. 1994. PMID: 7747931 Review.
Cited by
- An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics.
Lessner DJ, Li L, Li Q, Rejtar T, Andreev VP, Reichlen M, Hill K, Moran JJ, Karger BL, Ferry JG. Lessner DJ, et al. Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17921-6. doi: 10.1073/pnas.0608833103. Epub 2006 Nov 13. Proc Natl Acad Sci U S A. 2006. PMID: 17101988 Free PMC article. - Microbial community structure in three deep-sea carbonate crusts.
Heijs SK, Aloisi G, Bouloubassi I, Pancost RD, Pierre C, Sinninghe Damsté JS, Gottschal JC, van Elsas JD, Forney LJ. Heijs SK, et al. Microb Ecol. 2006 Oct;52(3):451-62. doi: 10.1007/s00248-006-9099-8. Epub 2006 Aug 15. Microb Ecol. 2006. PMID: 16909345 - Global transcriptional analysis of Methanosarcina mazei strain Gö1 under different nitrogen availabilities.
Veit K, Ehlers C, Ehrenreich A, Salmon K, Hovey R, Gunsalus RP, Deppenmeier U, Schmitz RA. Veit K, et al. Mol Genet Genomics. 2006 Jul;276(1):41-55. doi: 10.1007/s00438-006-0117-9. Epub 2006 Apr 20. Mol Genet Genomics. 2006. PMID: 16625354 - A1Ao-ATP synthase of Methanobrevibacter ruminantium couples sodium ions for ATP synthesis under physiological conditions.
McMillan DG, Ferguson SA, Dey D, Schröder K, Aung HL, Carbone V, Attwood GT, Ronimus RS, Meier T, Janssen PH, Cook GM. McMillan DG, et al. J Biol Chem. 2011 Nov 18;286(46):39882-92. doi: 10.1074/jbc.M111.281675. Epub 2011 Sep 27. J Biol Chem. 2011. PMID: 21953465 Free PMC article. - Biochemical characterization of a dihydroneopterin aldolase used for methanopterin biosynthesis in methanogens.
Wang Y, Xu H, Grochowski LL, White RH. Wang Y, et al. J Bacteriol. 2014 Sep;196(17):3191-8. doi: 10.1128/JB.01812-14. Epub 2014 Jun 30. J Bacteriol. 2014. PMID: 24982305 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources