Selective electrical interfaces with the nervous system - PubMed (original) (raw)
Review
Selective electrical interfaces with the nervous system
Wim L C Rutten. Annu Rev Biomed Eng. 2002.
Abstract
To achieve selective electrical interfacing to the neural system it is necessary to approach neuronal elements on a scale of micrometers. This necessitates microtechnology fabrication and introduces the interdisciplinary field of neurotechnology, lying at the juncture of neuroscience with microtechnology. The neuroelectronic interface occurs where the membrane of a cell soma or axon meets a metal microelectrode surface. The seal between these may be narrow or may be leaky. In the latter case the surrounding volume conductor becomes part of the interface. Electrode design for successful interfacing, either for stimulation or recording, requires good understanding of membrane phenomena, natural and evoked action potential generation, volume conduction, and electrode behavior. Penetrating multimicroelectrodes have been produced as one-, two-, and three-dimensional arrays, mainly in silicon, glass, and metal microtechnology. Cuff electrodes circumvent a nerve; their selectivity aims at fascicles more than at nerve fibers. Other types of electrodes are regenerating sieves and cone-ingrowth electrodes. The latter may play a role in brain-computer interfaces. Planar substrate-embedded electrode arrays with cultured neural cells on top are used to study the activity and plasticity of developing neural networks. They also serve as substrates for future so-called cultured probes.
Similar articles
- A system for MEA-based multisite stimulation.
Jimbo Y, Kasai N, Torimitsu K, Tateno T, Robinson HP. Jimbo Y, et al. IEEE Trans Biomed Eng. 2003 Feb;50(2):241-8. doi: 10.1109/TBME.2002.805470. IEEE Trans Biomed Eng. 2003. PMID: 12665038 - A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
Wark HA, Sharma R, Mathews KS, Fernandez E, Yoo J, Christensen B, Tresco P, Rieth L, Solzbacher F, Normann RA, Tathireddy P. Wark HA, et al. J Neural Eng. 2013 Aug;10(4):045003. doi: 10.1088/1741-2560/10/4/045003. Epub 2013 May 31. J Neural Eng. 2013. PMID: 23723133 - Signal strength versus cuff length in nerve cuff electrode recordings.
Andreasen LN, Struijk JJ. Andreasen LN, et al. IEEE Trans Biomed Eng. 2002 Sep;49(9):1045-50. doi: 10.1109/TBME.2002.800785. IEEE Trans Biomed Eng. 2002. PMID: 12214877 - Modeling extracellular electrical neural stimulation: from basic understanding to MEA-based applications.
Joucla S, Yvert B. Joucla S, et al. J Physiol Paris. 2012 May-Aug;106(3-4):146-58. doi: 10.1016/j.jphysparis.2011.10.003. Epub 2011 Oct 20. J Physiol Paris. 2012. PMID: 22036892 Review. - All my circuits: using multiple electrodes to understand functioning neural networks.
Miller EK, Wilson MA. Miller EK, et al. Neuron. 2008 Nov 6;60(3):483-8. doi: 10.1016/j.neuron.2008.10.033. Neuron. 2008. PMID: 18995823 Review.
Cited by
- Functional recordings from awake, behaving rodents through a microchannel based regenerative neural interface.
Gore RK, Choi Y, Bellamkonda R, English A. Gore RK, et al. J Neural Eng. 2015 Feb;12(1):016017. doi: 10.1088/1741-2560/12/1/016017. Epub 2015 Jan 21. J Neural Eng. 2015. PMID: 25605627 Free PMC article. - NeuroMEMS: Neural Probe Microtechnologies.
HajjHassan M, Chodavarapu V, Musallam S. HajjHassan M, et al. Sensors (Basel). 2008 Oct 25;8(10):6704-6726. doi: 10.3390/s8106704. Sensors (Basel). 2008. PMID: 27873894 Free PMC article. Review. - Neural interfaces for somatosensory feedback: bringing life to a prosthesis.
Tyler DJ. Tyler DJ. Curr Opin Neurol. 2015 Dec;28(6):574-81. doi: 10.1097/WCO.0000000000000266. Curr Opin Neurol. 2015. PMID: 26544029 Free PMC article. Review. - Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology.
Forro C, Caron D, Angotzi GN, Gallo V, Berdondini L, Santoro F, Palazzolo G, Panuccio G. Forro C, et al. Micromachines (Basel). 2021 Jan 24;12(2):124. doi: 10.3390/mi12020124. Micromachines (Basel). 2021. PMID: 33498905 Free PMC article. Review. - Conductive Hydrogels with Dynamic Reversible Networks for Biomedical Applications.
Xu Y, Patino Gaillez M, Rothe R, Hauser S, Voigt D, Pietzsch J, Zhang Y. Xu Y, et al. Adv Healthc Mater. 2021 Jun;10(11):e2100012. doi: 10.1002/adhm.202100012. Epub 2021 Apr 30. Adv Healthc Mater. 2021. PMID: 33930246 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources