Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae - PubMed (original) (raw)
Comparative Study
. 2002 Oct 4;277(40):37001-8.
doi: 10.1074/jbc.M204490200. Epub 2002 Jul 16.
Affiliations
- PMID: 12121991
- DOI: 10.1074/jbc.M204490200
Free article
Comparative Study
Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae
Matthew D W Piper et al. J Biol Chem. 2002.
Free article
Abstract
Assessment of reproducibility of DNA-microarray analysis from published data sets is complicated by the use of different microbial strains, cultivation techniques, and analytical procedures. Because intra- and interlaboratory reproducibility is highly relevant for application of DNA-microarray analysis in functional genomics and metabolic engineering, we designed a set of experiments to specifically address this issue. Saccharomyces cerevisiae CEN.PK113-7D was grown under defined conditions in glucose-limited chemostats, followed by transcriptome analysis with Affymetrix GeneChip arrays. In each of the laboratories, three independent replicate cultures were grown aerobically as well as anaerobically. Although variations introduced by in vitro handling steps were small and unbiased, greater variation from replicate cultures underscored that, to obtain reliable information, experimental replication is essential. Under aerobic conditions, 86% of the most highly expressed yeast genes showed an average intralaboratory coefficient of variation of 0.23. This is significantly lower than previously reported for shake-flask-culture transcriptome analyses and probably reflects the strict control of growth conditions in chemostats. Using the triplicate data sets and appropriate statistical analysis, the change calls from anaerobic versus aerobic comparisons yielded an over 95% agreement between the laboratories for transcripts that changed by over 2-fold, leaving only a small fraction of genes that exhibited laboratory bias.
Similar articles
- Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays.
Daran-Lapujade P, Daran JM, Kötter P, Petit T, Piper MD, Pronk JT. Daran-Lapujade P, et al. FEMS Yeast Res. 2003 Dec;4(3):259-69. doi: 10.1016/S1567-1356(03)00156-9. FEMS Yeast Res. 2003. PMID: 14654430 - Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae.
Diderich JA, Schepper M, van Hoek P, Luttik MA, van Dijken JP, Pronk JT, Klaassen P, Boelens HF, de Mattos MJ, van Dam K, Kruckeberg AL. Diderich JA, et al. J Biol Chem. 1999 May 28;274(22):15350-9. doi: 10.1074/jbc.274.22.15350. J Biol Chem. 1999. PMID: 10336421 - Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae.
ter Linde JJ, Liang H, Davis RW, Steensma HY, van Dijken JP, Pronk JT. ter Linde JJ, et al. J Bacteriol. 1999 Dec;181(24):7409-13. doi: 10.1128/JB.181.24.7409-7413.1999. J Bacteriol. 1999. PMID: 10601195 Free PMC article. - Chemostat-based micro-array analysis in baker's yeast.
Daran-Lapujade P, Daran JM, van Maris AJ, de Winde JH, Pronk JT. Daran-Lapujade P, et al. Adv Microb Physiol. 2009;54:257-311. doi: 10.1016/S0065-2911(08)00004-0. Adv Microb Physiol. 2009. PMID: 18929070 Review. - [Decade of genomics--methods for genome investigation in yeast Saccharomyces cerevisiae].
Skoneczna A. Skoneczna A. Postepy Biochem. 2006;52(4):435-47. Postepy Biochem. 2006. PMID: 17536513 Review. Polish.
Cited by
- Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP Study.
Dumas ME, Maibaum EC, Teague C, Ueshima H, Zhou B, Lindon JC, Nicholson JK, Stamler J, Elliott P, Chan Q, Holmes E. Dumas ME, et al. Anal Chem. 2006 Apr 1;78(7):2199-208. doi: 10.1021/ac0517085. Anal Chem. 2006. PMID: 16579598 Free PMC article. - On the choice and number of microarrays for transcriptional regulatory network inference.
Cosgrove EJ, Gardner TS, Kolaczyk ED. Cosgrove EJ, et al. BMC Bioinformatics. 2010 Sep 9;11:454. doi: 10.1186/1471-2105-11-454. BMC Bioinformatics. 2010. PMID: 20825684 Free PMC article. - Design and Experimental Evaluation of a Minimal, Innocuous Watermarking Strategy to Distinguish Near-Identical DNA and RNA Sequences.
Boonekamp FJ, Dashko S, Duiker D, Gehrmann T, van den Broek M, den Ridder M, Pabst M, Robert V, Abeel T, Postma ED, Daran JM, Daran-Lapujade P. Boonekamp FJ, et al. ACS Synth Biol. 2020 Jun 19;9(6):1361-1375. doi: 10.1021/acssynbio.0c00045. Epub 2020 Jun 3. ACS Synth Biol. 2020. PMID: 32413257 Free PMC article. - Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER.
Wong BG, Mancuso CP, Kiriakov S, Bashor CJ, Khalil AS. Wong BG, et al. Nat Biotechnol. 2018 Aug;36(7):614-623. doi: 10.1038/nbt.4151. Epub 2018 Jun 11. Nat Biotechnol. 2018. PMID: 29889214 Free PMC article. - Elimination of sucrose transport and hydrolysis in Saccharomyces cerevisiae: a platform strain for engineering sucrose metabolism.
Marques WL, Mans R, Marella ER, Cordeiro RL, van den Broek M, Daran JG, Pronk JT, Gombert AK, van Maris AJ. Marques WL, et al. FEMS Yeast Res. 2017 Jan 1;17(1):fox006. doi: 10.1093/femsyr/fox006. FEMS Yeast Res. 2017. PMID: 28087672 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases