How to get from A to B: strategies for analysing protein motion on DNA - PubMed (original) (raw)
Review
How to get from A to B: strategies for analysing protein motion on DNA
Stephen E Halford et al. Eur Biophys J. 2002 Jul.
Abstract
Essentially all genetic events require proteins to move from one location in a DNA polymer to another location in the same chain. A protein will seldom bind to a specific site in the DNA by colliding directly with that site. Instead, the protein will almost always collide first with a random site anywhere in the DNA and then migrate to the specific site by a facilitated-diffusion process that is constrained to the zone of that DNA molecule. Thereafter, many proteins bound to their target sites translocate in a specified direction along the DNA by a energy-dependent vectorial mechanism. This review will discuss some of the strategies that have been developed to analyse the motion of proteins on DNA, with respect to both the random diffusion processes involved in target-site location by DNA-binding proteins and the vectorial processes involved in unidirectional translocation along DNA.
Similar articles
- Protein motion from non-specific to specific DNA by three-dimensional routes aided by supercoiling.
Gowers DM, Halford SE. Gowers DM, et al. EMBO J. 2003 Mar 17;22(6):1410-8. doi: 10.1093/emboj/cdg125. EMBO J. 2003. PMID: 12628933 Free PMC article. - One- and three-dimensional pathways for proteins to reach specific DNA sites.
Stanford NP, Szczelkun MD, Marko JF, Halford SE. Stanford NP, et al. EMBO J. 2000 Dec 1;19(23):6546-57. doi: 10.1093/emboj/19.23.6546. EMBO J. 2000. PMID: 11101527 Free PMC article. - Mapping a protein-binding site on straightened DNA by atomic force microscopy.
Yokota H, Nickerson DA, Trask BJ, van den Engh G, Hirst M, Sadowski I, Aebersold R. Yokota H, et al. Anal Biochem. 1998 Nov 15;264(2):158-64. doi: 10.1006/abio.1998.2851. Anal Biochem. 1998. PMID: 9866677 - Facilitated diffusion in chromatin lattices: mechanistic diversity and regulatory potential.
Kampmann M. Kampmann M. Mol Microbiol. 2005 Aug;57(4):889-99. doi: 10.1111/j.1365-2958.2005.04707.x. Mol Microbiol. 2005. PMID: 16091032 Review. - Visualizing one-dimensional diffusion of proteins along DNA.
Gorman J, Greene EC. Gorman J, et al. Nat Struct Mol Biol. 2008 Aug;15(8):768-74. doi: 10.1038/nsmb.1441. Epub 2008 Aug 5. Nat Struct Mol Biol. 2008. PMID: 18679428 Review.
Cited by
- Dynamic strategies for target-site search by DNA-binding proteins.
de la Rosa MA, Koslover EF, Mulligan PJ, Spakowitz AJ. de la Rosa MA, et al. Biophys J. 2010 Jun 16;98(12):2943-53. doi: 10.1016/j.bpj.2010.02.055. Biophys J. 2010. PMID: 20550907 Free PMC article. - Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics.
Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Paleček E, et al. Chem Rev. 2015 Mar 11;115(5):2045-108. doi: 10.1021/cr500279h. Epub 2015 Feb 9. Chem Rev. 2015. PMID: 25659975 Free PMC article. Review. No abstract available. - RNA polymerase can track a DNA groove during promoter search.
Sakata-Sogawa K, Shimamoto N. Sakata-Sogawa K, et al. Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14731-5. doi: 10.1073/pnas.0406441101. Epub 2004 Oct 6. Proc Natl Acad Sci U S A. 2004. PMID: 15469913 Free PMC article. - Anatomy of Escherichia coli sigma70 promoters.
Shultzaberger RK, Chen Z, Lewis KA, Schneider TD. Shultzaberger RK, et al. Nucleic Acids Res. 2007;35(3):771-88. doi: 10.1093/nar/gkl956. Epub 2006 Dec 22. Nucleic Acids Res. 2007. PMID: 17189297 Free PMC article. - Hopping of a processivity factor on DNA revealed by single-molecule assays of diffusion.
Komazin-Meredith G, Mirchev R, Golan DE, van Oijen AM, Coen DM. Komazin-Meredith G, et al. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10721-6. doi: 10.1073/pnas.0802676105. Epub 2008 Jul 25. Proc Natl Acad Sci U S A. 2008. PMID: 18658237 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources