Maintenance of genome stability in Saccharomyces cerevisiae - PubMed (original) (raw)
Review
. 2002 Jul 26;297(5581):552-7.
doi: 10.1126/science.1075277.
Affiliations
- PMID: 12142524
- DOI: 10.1126/science.1075277
Free article
Review
Maintenance of genome stability in Saccharomyces cerevisiae
Richard D Kolodner et al. Science. 2002.
Free article
Abstract
Most human cancer cells show signs of genome instability, ranging from elevated mutation rates to gross chromosomal rearrangements and alterations in chromosome number. Little is known about the molecular mechanisms that generate this instability or how it is suppressed in normal cells. Recent studies of the yeast Saccharomyces cerevisiae have begun to uncover the extensive and redundant pathways that keep the rate of genome rearrangements at very low levels. These studies, which we review here, have implicated more than 50 genes in the suppression of genome instability, including genes that function in S-phase checkpoints, recombination pathways, and telomere maintenance. Human homologs of several of these genes have well-established roles as tumor suppressors, consistent with the hypothesis that the mechanisms preserving genome stability in yeast are the same mechanisms that go awry in cancer.
Similar articles
- Increased genome instability and telomere length in the elg1-deficient Saccharomyces cerevisiae mutant are regulated by S-phase checkpoints.
Banerjee S, Myung K. Banerjee S, et al. Eukaryot Cell. 2004 Dec;3(6):1557-66. doi: 10.1128/EC.3.6.1557-1566.2004. Eukaryot Cell. 2004. PMID: 15590829 Free PMC article. - Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae.
Myung K, Kolodner RD. Myung K, et al. Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4500-7. doi: 10.1073/pnas.062702199. Epub 2002 Mar 26. Proc Natl Acad Sci U S A. 2002. PMID: 11917116 Free PMC article. - Recombination and the Tel1 and Mec1 checkpoints differentially effect genome rearrangements driven by telomere dysfunction in yeast.
Pennaneach V, Kolodner RD. Pennaneach V, et al. Nat Genet. 2004 Jun;36(6):612-7. doi: 10.1038/ng1359. Epub 2004 May 9. Nat Genet. 2004. PMID: 15133512 - Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae.
Putnam CD, Kolodner RD. Putnam CD, et al. Genetics. 2017 Jul;206(3):1187-1225. doi: 10.1534/genetics.112.145805. Genetics. 2017. PMID: 28684602 Free PMC article. Review.
Cited by
- Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages.
Xu Z, Fallet E, Paoletti C, Fehrmann S, Charvin G, Teixeira MT. Xu Z, et al. Nat Commun. 2015 Jul 9;6:7680. doi: 10.1038/ncomms8680. Nat Commun. 2015. PMID: 26158780 Free PMC article. - Checkpoint kinases regulate a global network of transcription factors in response to DNA damage.
Jaehnig EJ, Kuo D, Hombauer H, Ideker TG, Kolodner RD. Jaehnig EJ, et al. Cell Rep. 2013 Jul 11;4(1):174-88. doi: 10.1016/j.celrep.2013.05.041. Epub 2013 Jun 27. Cell Rep. 2013. PMID: 23810556 Free PMC article. - Quantitative phosphoproteomics: New technologies and applications in the DNA damage response.
Zhou H, Albuquerque CP, Liang J, Suhandynata RT, Weng S. Zhou H, et al. Cell Cycle. 2010 Sep 1;9(17):3479-84. doi: 10.4161/cc.9.17.13152. Epub 2010 Sep 26. Cell Cycle. 2010. PMID: 20855976 Free PMC article. Review. - Maintaining genome stability at the replication fork.
Branzei D, Foiani M. Branzei D, et al. Nat Rev Mol Cell Biol. 2010 Mar;11(3):208-19. doi: 10.1038/nrm2852. Nat Rev Mol Cell Biol. 2010. PMID: 20177396 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases