Stochastic gene expression in a single cell - PubMed (original) (raw)
. 2002 Aug 16;297(5584):1183-6.
doi: 10.1126/science.1070919.
Affiliations
- PMID: 12183631
- DOI: 10.1126/science.1070919
Stochastic gene expression in a single cell
Michael B Elowitz et al. Science. 2002.
Abstract
Clonal populations of cells exhibit substantial phenotypic variation. Such heterogeneity can be essential for many biological processes and is conjectured to arise from stochasticity, or noise, in gene expression. We constructed strains of Escherichia coli that enable detection of noise and discrimination between the two mechanisms by which it is generated. Both stochasticity inherent in the biochemical process of gene expression (intrinsic noise) and fluctuations in other cellular components (extrinsic noise) contribute substantially to overall variation. Transcription rate, regulatory dynamics, and genetic factors control the amplitude of noise. These results establish a quantitative foundation for modeling noise in genetic networks and reveal how low intracellular copy numbers of molecules can fundamentally limit the precision of gene regulation.
Comment in
- Genetic networks. Small numbers of big molecules.
Fedoroff N, Fontana W. Fedoroff N, et al. Science. 2002 Aug 16;297(5584):1129-31. doi: 10.1126/science.1075988. Science. 2002. PMID: 12183614 No abstract available.
Similar articles
- Noise propagation in gene networks.
Pedraza JM, van Oudenaarden A. Pedraza JM, et al. Science. 2005 Mar 25;307(5717):1965-9. doi: 10.1126/science.1109090. Science. 2005. PMID: 15790857 - Genetic networks. Small numbers of big molecules.
Fedoroff N, Fontana W. Fedoroff N, et al. Science. 2002 Aug 16;297(5584):1129-31. doi: 10.1126/science.1075988. Science. 2002. PMID: 12183614 No abstract available. - Gene regulation at the single-cell level.
Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB. Rosenfeld N, et al. Science. 2005 Mar 25;307(5717):1962-5. doi: 10.1126/science.1106914. Science. 2005. PMID: 15790856 - Stochastic and delayed stochastic models of gene expression and regulation.
Ribeiro AS. Ribeiro AS. Math Biosci. 2010 Jan;223(1):1-11. doi: 10.1016/j.mbs.2009.10.007. Epub 2009 Oct 31. Math Biosci. 2010. PMID: 19883665 Review. - Towards a circuit engineering discipline.
McAdams HH, Arkin A. McAdams HH, et al. Curr Biol. 2000 Apr 20;10(8):R318-20. doi: 10.1016/s0960-9822(00)00440-1. Curr Biol. 2000. PMID: 10801411 Review.
Cited by
- Asynchronous abundance fluctuations can drive giant genotype frequency fluctuations.
Ascensao JA, Lok K, Hallatschek O. Ascensao JA, et al. Nat Ecol Evol. 2024 Nov 22. doi: 10.1038/s41559-024-02578-3. Online ahead of print. Nat Ecol Evol. 2024. PMID: 39578596 - Deep learning-based models for preimplantation mouse and human embryos based on single-cell RNA sequencing.
Proks M, Salehin N, Brickman JM. Proks M, et al. Nat Methods. 2024 Nov 14. doi: 10.1038/s41592-024-02511-3. Online ahead of print. Nat Methods. 2024. PMID: 39543284 - How genotype-by-environment interactions on fitness emerge.
Aubé S, Landry CR. Aubé S, et al. Nat Ecol Evol. 2024 Dec;8(12):2157-2158. doi: 10.1038/s41559-024-02577-4. Nat Ecol Evol. 2024. PMID: 39537897 No abstract available. - Abstraction-based segmental simulation of reaction networks using adaptive memoization.
Helfrich M, Andriushchenko R, Češka M, Křetínský J, Martiček Š, Šafránek D. Helfrich M, et al. BMC Bioinformatics. 2024 Nov 8;25(1):350. doi: 10.1186/s12859-024-05966-5. BMC Bioinformatics. 2024. PMID: 39516723 Free PMC article. - A method for in silico exploration of potential glioblastoma multiforme attractors using single-cell RNA sequencing.
Vieira Junior MG, de Almeida Côrtes AM, Gonçalves Carneiro FR, Carels N, Silva FABD. Vieira Junior MG, et al. Sci Rep. 2024 Oct 29;14(1):26003. doi: 10.1038/s41598-024-74985-2. Sci Rep. 2024. PMID: 39472601 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources