Identification of in vitro and in vivo phosphorylation sites in the catalytic subunit of the DNA-dependent protein kinase - PubMed (original) (raw)
Identification of in vitro and in vivo phosphorylation sites in the catalytic subunit of the DNA-dependent protein kinase
Pauline Douglas et al. Biochem J. 2002.
Abstract
The DNA-dependent protein kinase (DNA-PK) is required for the repair of DNA double-strand breaks (DSBs), such as those caused by ionizing radiation and other DNA-damaging agents. DNA-PK is composed of a large catalytic subunit (DNA-PKcs) and a heterodimer of Ku70 and Ku80 that assemble on the ends of double-stranded DNA to form an active serine/threonine protein kinase complex. Despite in vitro and in vivo evidence to support an essential role for the protein kinase activity of DNA-PK in the repair of DNA DSBs, the physiological targets of DNA-PK have remained elusive. We have previously shown that DNA-PK undergoes autophosphorylation in vitro, and that autophosphorylation correlates with loss of protein kinase activity and dissociation of the DNA-PK complex. Also, treatment of cells with the protein phosphatase inhibitor, okadaic acid, enhances DNA-PKcs phosphorylation and reduces DNA-PK activity in vivo. Here, using solid-phase protein sequencing, MS and phosphospecific antibodies, we have identified seven in vitro autophosphorylation sites in DNA-PKcs. Six of these sites (Thr2609, Ser2612, Thr2620, Ser2624, Thr2638 and Thr2647) are clustered in a region of 38 amino acids in the central region of the protein. Five of these sites (Thr2609, Ser2612, Thr2638, Thr2647 and Ser3205) are conserved between six vertebrate species. Moreover, we show that DNA-PKcs is phosphorylated in vivo at Thr2609, Ser2612, Thr2638 and Thr2647 in okadaic acid-treated human cells. We propose that phosphorylation of these sites may play an important role in DNA-PK function.
Similar articles
- The DNA-dependent protein kinase catalytic subunit is phosphorylated in vivo on threonine 3950, a highly conserved amino acid in the protein kinase domain.
Douglas P, Cui X, Block WD, Yu Y, Gupta S, Ding Q, Ye R, Morrice N, Lees-Miller SP, Meek K. Douglas P, et al. Mol Cell Biol. 2007 Mar;27(5):1581-91. doi: 10.1128/MCB.01962-06. Epub 2006 Dec 11. Mol Cell Biol. 2007. PMID: 17158925 Free PMC article. - DNA-PK-dependent phosphorylation of Ku70/80 is not required for non-homologous end joining.
Douglas P, Gupta S, Morrice N, Meek K, Lees-Miller SP. Douglas P, et al. DNA Repair (Amst). 2005 Aug 15;4(9):1006-18. doi: 10.1016/j.dnarep.2005.05.003. DNA Repair (Amst). 2005. PMID: 15941674 - Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks.
Chan DW, Chen BP, Prithivirajsingh S, Kurimasa A, Story MD, Qin J, Chen DJ. Chan DW, et al. Genes Dev. 2002 Sep 15;16(18):2333-8. doi: 10.1101/gad.1015202. Genes Dev. 2002. PMID: 12231622 Free PMC article. - The life and death of DNA-PK.
Collis SJ, DeWeese TL, Jeggo PA, Parker AR. Collis SJ, et al. Oncogene. 2005 Feb 3;24(6):949-61. doi: 10.1038/sj.onc.1208332. Oncogene. 2005. PMID: 15592499 Review. - [DNA-dependent protein kinase: a major protein involved in the cellular response to ionizing radiation].
Muller C, Rodrigo G, Calsou P, Salles B. Muller C, et al. Bull Cancer. 1999 Dec;86(12):977-83. Bull Cancer. 1999. PMID: 10660692 Review. French.
Cited by
- DNA-PK: A synopsis beyond synapsis.
Goff NJ, Mikhova M, Schmidt JC, Meek K. Goff NJ, et al. DNA Repair (Amst). 2024 Sep;141:103716. doi: 10.1016/j.dnarep.2024.103716. Epub 2024 Jul 8. DNA Repair (Amst). 2024. PMID: 38996771 Review. - The BAP1 nuclear deubiquitinase is involved in the nonhomologous end-joining pathway of double-strand DNA repair through interaction with DNA-PK.
Sato H, Ito T, Hayashi T, Kitano S, Erdjument-Bromage H, Bott MJ, Toyooka S, Zauderer M, Ladanyi M. Sato H, et al. Oncogene. 2024 Apr;43(15):1087-1097. doi: 10.1038/s41388-024-02966-w. Epub 2024 Feb 21. Oncogene. 2024. PMID: 38383726 Free PMC article. - ALK signaling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition.
Borenäs M, Umapathy G, Lind DE, Lai WY, Guan J, Johansson J, Jennische E, Schmidt A, Kurhe Y, Gabre JL, Aniszewska A, Strömberg A, Bemark M, Hall MN, Eynden JVD, Hallberg B, Palmer RH. Borenäs M, et al. Proc Natl Acad Sci U S A. 2024 Jan 2;121(1):e2315242121. doi: 10.1073/pnas.2315242121. Epub 2023 Dec 28. Proc Natl Acad Sci U S A. 2024. PMID: 38154064 Free PMC article. - Synergistic cytotoxicity of fludarabine, clofarabine, busulfan, vorinostat and olaparib in AML cells.
Valdez BC, Yuan B, Murray D, Ramdial JL, Nieto Y, Popat U, Tang X, Andersson BS. Valdez BC, et al. Front Oncol. 2023 Nov 23;13:1287444. doi: 10.3389/fonc.2023.1287444. eCollection 2023. Front Oncol. 2023. PMID: 38074694 Free PMC article. - Targeting DNA-PK.
Novotny JP, Mariño-Enríquez A, Fletcher JA. Novotny JP, et al. Cancer Treat Res. 2023;186:299-312. doi: 10.1007/978-3-031-30065-3_16. Cancer Treat Res. 2023. PMID: 37978142
References
- Cell. 1993 Jan 15;72(1):131-42 - PubMed
- J Biol Chem. 2000 Mar 17;275(11):7803-10 - PubMed
- Genes Dev. 2001 Sep 1;15(17):2177-96 - PubMed
- Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2438-43 - PubMed
- Gene. 2002 Jan 23;283(1-2):263-9 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials