Global analysis of gene expression in yeast - PubMed (original) (raw)
Review
. 2002 Sep;2(4-5):171-80.
doi: 10.1007/s10142-002-0065-3. Epub 2002 Jul 10.
Affiliations
- PMID: 12192590
- DOI: 10.1007/s10142-002-0065-3
Review
Global analysis of gene expression in yeast
Christine E Horak et al. Funct Integr Genomics. 2002 Sep.
Abstract
In the past decade, there has been an intense effort to comprehensively catalogue the expressed genes in the yeast Saccharomyces cerevisiae and to determine the absolute and relative abundance of transcript and protein levels under different cellular conditions. Several methods have been developed to monitor gene expression: DNA microarray analysis, Serial Analysis of Gene Expression (SAGE), kinetic RT-PCR and monitoring expression of beta-galactosidase fusion proteins. These techniques have been used to measure transcript and protein abundance in different developmental states and under different environmental stimuli. A wealth of expression data for yeast is now publicly available through several web sites. The expression information that exists has the obvious benefits of providing a better understanding of the gene expression patterns that accompany changes in a yeast cell's environmental and developmental states. This data has also, however, provided clues to unraveling the complicated questions surrounding gene regulation: why and how is gene expression controlled?
Similar articles
- Expression profiling of the bottom fermenting yeast Saccharomyces pastorianus orthologous genes using oligonucleotide microarrays.
Minato T, Yoshida S, Ishiguro T, Shimada E, Mizutani S, Kobayashi O, Yoshimoto H. Minato T, et al. Yeast. 2009 Mar;26(3):147-65. doi: 10.1002/yea.1654. Yeast. 2009. PMID: 19243081 - Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.
Varela C, Cárdenas J, Melo F, Agosin E. Varela C, et al. Yeast. 2005 Apr 15;22(5):369-83. doi: 10.1002/yea.1217. Yeast. 2005. PMID: 15806604 - Universal external RNA controls for microbial gene expression analysis using microarray and qRT-PCR.
Liu ZL, Slininger PJ. Liu ZL, et al. J Microbiol Methods. 2007 Mar;68(3):486-96. doi: 10.1016/j.mimet.2006.10.014. Epub 2006 Dec 14. J Microbiol Methods. 2007. PMID: 17173990 - [Transcriptomes for serial analysis of gene expression].
Marti J, Piquemal D, Manchon L, Commes T. Marti J, et al. J Soc Biol. 2002;196(4):303-7. J Soc Biol. 2002. PMID: 12645300 Review. French. - Transcriptional networks: reverse-engineering gene regulation on a global scale.
Chua G, Robinson MD, Morris Q, Hughes TR. Chua G, et al. Curr Opin Microbiol. 2004 Dec;7(6):638-46. doi: 10.1016/j.mib.2004.10.009. Curr Opin Microbiol. 2004. PMID: 15556037 Review.
Cited by
- Analysis of the floral transcriptome uncovers new regulators of organ determination and gene families related to flower organ differentiation in Gerbera hybrida (Asteraceae).
Laitinen RA, Immanen J, Auvinen P, Rudd S, Alatalo E, Paulin L, Ainasoja M, Kotilainen M, Koskela S, Teeri TH, Elomaa P. Laitinen RA, et al. Genome Res. 2005 Apr;15(4):475-86. doi: 10.1101/gr.3043705. Epub 2005 Mar 21. Genome Res. 2005. PMID: 15781570 Free PMC article. - Excess histone levels mediate cytotoxicity via multiple mechanisms.
Singh RK, Liang D, Gajjalaiahvari UR, Kabbaj MH, Paik J, Gunjan A. Singh RK, et al. Cell Cycle. 2010 Oct 15;9(20):4236-44. doi: 10.4161/cc.9.20.13636. Epub 2010 Oct 13. Cell Cycle. 2010. PMID: 20948314 Free PMC article. - ExpressYourself: A modular platform for processing and visualizing microarray data.
Luscombe NM, Royce TE, Bertone P, Echols N, Horak CE, Chang JT, Snyder M, Gerstein M. Luscombe NM, et al. Nucleic Acids Res. 2003 Jul 1;31(13):3477-82. doi: 10.1093/nar/gkg628. Nucleic Acids Res. 2003. PMID: 12824348 Free PMC article. - OMICS Approaches to Assess Dinoflagellate Responses to Chemical Stressors.
Roussel A, Mériot V, Jauffrais T, Berteaux-Lecellier V, Lebouvier N. Roussel A, et al. Biology (Basel). 2023 Sep 13;12(9):1234. doi: 10.3390/biology12091234. Biology (Basel). 2023. PMID: 37759633 Free PMC article. Review. - Integrative analysis of transcriptomic and proteomic data of Desulfovibrio vulgaris: a non-linear model to predict abundance of undetected proteins.
Torres-García W, Zhang W, Runger GC, Johnson RH, Meldrum DR. Torres-García W, et al. Bioinformatics. 2009 Aug 1;25(15):1905-14. doi: 10.1093/bioinformatics/btp325. Epub 2009 May 15. Bioinformatics. 2009. PMID: 19447782 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous