CD38 expression and NAD+-induced intracellular Ca+ mobilization in isolated retinal Müller cells - PubMed (original) (raw)
CD38 expression and NAD+-induced intracellular Ca+ mobilization in isolated retinal Müller cells
Manuel Esguerra et al. Glia. 2002 Sep.
Abstract
Müller cells of the vertebrate retina are prominent radial glia that provide essential support to sustain homeostasis of the tissue, including redistribution of external potassium, uptake and metabolism of neurotransmitters, and secretion of factors that stabilize the retina. Meeting this diversity of functional supports requires that Müller cells express numerous receptors, transporters, enzymes, and tissue factors. In this study, we provide evidence that adds to the dimensions of Müller cell function by demonstrating a unique relationship between external NAD(+) and the mobilization of internal calcium, expressed in the form of calcium waves. The cellular mechanism that supports internal mobilization of calcium appears to depend on a complex multifunctional ectoenzyme, CD38, which converts NAD(+) into the intracellular Ca(2+)-mobilizing second-messenger cyclic ADP-ribose (cADPR) and could function as a detector for extracellular NAD(+), thus providing a novel signal detection system for evaluating the extracellular environment. Our results are consistent with a model of intracellular Ca(2+) mobilization in which membrane-bound CD38 binds extracellular NAD(+) and triggers intracellular Ca(2+) waves either by direct conversion of NAD(+) to cADPR or by activating intracellular cADPR synthesis. Our preliminary results indicate that the Ca(2+) waves induced by external NAD(+) propagate through an internal pathway that depends on the activation of ryanodine receptors, which appear to be distributed throughout the Müller cell cytosol. Because NAD(+) is likely to be enhanced when cells are stress or damaged, CD38 could enable Müller cells to detect NAD(+) under these circumstances and respond appropriately. Alternatively, NAD(+) could also represent a novel extracellular, paracrine function that mediates signaling between glial cells and/or other cellular elements of the retina.
Copyright 2002 Wiley-Liss, Inc.
Similar articles
- Extracellular NAD(+) induces calcium signaling and apoptosis in human osteoblastic cells.
Romanello M, Padoan M, Franco L, Veronesi V, Moro L, D'Andrea P. Romanello M, et al. Biochem Biophys Res Commun. 2001 Aug 3;285(5):1226-31. doi: 10.1006/bbrc.2001.5325. Biochem Biophys Res Commun. 2001. PMID: 11478787 - Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system.
De Flora A, Zocchi E, Guida L, Franco L, Bruzzone S. De Flora A, et al. Ann N Y Acad Sci. 2004 Dec;1028:176-91. doi: 10.1196/annals.1322.021. Ann N Y Acad Sci. 2004. PMID: 15650244 Review. - Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo.
Partida-Sánchez S, Cockayne DA, Monard S, Jacobson EL, Oppenheimer N, Garvy B, Kusser K, Goodrich S, Howard M, Harmsen A, Randall TD, Lund FE. Partida-Sánchez S, et al. Nat Med. 2001 Nov;7(11):1209-16. doi: 10.1038/nm1101-1209. Nat Med. 2001. PMID: 11689885 - A novel mechanism for coupling cellular intermediary metabolism to cytosolic Ca2+ signaling via CD38/ADP-ribosyl cyclase, a putative intracellular NAD+ sensor.
Sun L, Adebanjo OA, Koval A, Anandatheerthavarada HK, Iqbal J, Wu XY, Moonga BS, Wu XB, Biswas G, Bevis PJ, Kumegawa M, Epstein S, Huang CL, Avadhani NG, Abe E, Zaidi M. Sun L, et al. FASEB J. 2002 Mar;16(3):302-14. doi: 10.1096/fj.01-0705com. FASEB J. 2002. PMID: 11874980 - Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system.
Higashida H, Salmina AB, Olovyannikova RY, Hashii M, Yokoyama S, Koizumi K, Jin D, Liu HX, Lopatina O, Amina S, Islam MS, Huang JJ, Noda M. Higashida H, et al. Neurochem Int. 2007 Jul-Sep;51(2-4):192-9. doi: 10.1016/j.neuint.2007.06.023. Epub 2007 Jun 28. Neurochem Int. 2007. PMID: 17664018 Review.
Cited by
- Calcium signaling in specialized glial cells.
Metea MR, Newman EA. Metea MR, et al. Glia. 2006 Nov 15;54(7):650-655. doi: 10.1002/glia.20352. Glia. 2006. PMID: 17006893 Free PMC article. Review. - Involvement of P2X receptors in the NAD(+)-induced rise in [Ca (2+)] (i) in human monocytes.
Grahnert A, Klein C, Hauschildt S. Grahnert A, et al. Purinergic Signal. 2009 Sep;5(3):309-19. doi: 10.1007/s11302-009-9144-4. Epub 2009 Feb 17. Purinergic Signal. 2009. PMID: 19221895 Free PMC article. - Effects of NAD at purine receptors in isolated blood vessels.
Alefishat E, Alexander SP, Ralevic V. Alefishat E, et al. Purinergic Signal. 2015 Mar;11(1):47-57. doi: 10.1007/s11302-014-9428-1. Epub 2014 Oct 15. Purinergic Signal. 2015. PMID: 25315718 Free PMC article. - CD38 and CD157 ectoenzymes mark cell subsets in the human corneal limbus.
Horenstein AL, Sizzano F, Lusso R, Besso FG, Ferrero E, Deaglio S, Corno F, Malavasi F. Horenstein AL, et al. Mol Med. 2009 Mar-Apr;15(3-4):76-84. doi: 10.2119/molmed.2008.00108. Epub 2008 Nov 19. Mol Med. 2009. PMID: 19052657 Free PMC article. - Retinovascular physiology and pathophysiology: new experimental approach/new insights.
Puro DG. Puro DG. Prog Retin Eye Res. 2012 May;31(3):258-70. doi: 10.1016/j.preteyeres.2012.01.001. Epub 2012 Feb 5. Prog Retin Eye Res. 2012. PMID: 22333041 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous