Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators - PubMed (original) (raw)
Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators
Puvi N Seshiah et al. Circ Res. 2002.
Abstract
Angiotensin II (Ang II)-stimulated hypertrophy of vascular smooth muscle cells is mediated by reactive oxygen species (ROS) derived from NAD(P)H oxidases. The upstream signaling mechanisms by which Ang II activates these oxidases are unclear but may include protein kinase C, tyrosine kinases, phosphatidylinositol-3-kinase, and Rac, a small molecular weight G protein. We found that Ang II-stimulated ROS production is biphasic. The first phase occurs rapidly (peak at 30 seconds) and is dependent on protein kinase C activation. The larger second phase of ROS generation (peak at 30 minutes) requires Rac activation, because inhibition of Rac by either Clostridium difficile toxin A or dominant-negative Rac significantly inhibits Ang II-induced ROS production. Phosphatidylinositol-3-kinase inhibitors (wortmannin or LY294002) and the epidermal growth factor (EGF) receptor kinase blocker AG1478 attenuate both Rac activation and ROS generation. The upstream activator of EGF receptor transactivation, c-Src, is also required for ROS generation, because PP1, an Src kinase inhibitor, abrogates the Ang II stimulation of both responses. These results suggest that c-Src, EGF receptor transactivation, phosphatidylinositol-3-kinase, and Rac play important roles in the sustained Ang II-mediated activation of vascular smooth muscle cell NAD(P)H oxidases and provide insight into the integrated signaling mechanisms whereby Ang II stimulation leads to activation of the growth-related NAD(P)H oxidases.
Similar articles
- Mechanism of angiotensin II-induced superoxide production in cells reconstituted with angiotensin type 1 receptor and the components of NADPH oxidase.
Choi H, Leto TL, Hunyady L, Catt KJ, Bae YS, Rhee SG. Choi H, et al. J Biol Chem. 2008 Jan 4;283(1):255-267. doi: 10.1074/jbc.M708000200. Epub 2007 Nov 2. J Biol Chem. 2008. PMID: 17981802 - Epidermal growth factor receptor transactivation by angiotensin II requires reactive oxygen species in vascular smooth muscle cells.
Ushio-Fukai M, Griendling KK, Becker PL, Hilenski L, Halleran S, Alexander RW. Ushio-Fukai M, et al. Arterioscler Thromb Vasc Biol. 2001 Apr;21(4):489-95. doi: 10.1161/01.atv.21.4.489. Arterioscler Thromb Vasc Biol. 2001. PMID: 11304462 Retracted. - Signaling events mediating the additive effects of oleic acid and angiotensin II on vascular smooth muscle cell migration.
Greene EL, Lu G, Zhang D, Egan BM. Greene EL, et al. Hypertension. 2001 Feb;37(2):308-12. doi: 10.1161/01.hyp.37.2.308. Hypertension. 2001. PMID: 11230290 - Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology.
Griendling KK, Sorescu D, Lassègue B, Ushio-Fukai M. Griendling KK, et al. Arterioscler Thromb Vasc Biol. 2000 Oct;20(10):2175-83. doi: 10.1161/01.atv.20.10.2175. Arterioscler Thromb Vasc Biol. 2000. PMID: 11031201 Review. - Angiotensin II, NADPH oxidase, and redox signaling in the vasculature.
Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM. Nguyen Dinh Cat A, et al. Antioxid Redox Signal. 2013 Oct 1;19(10):1110-20. doi: 10.1089/ars.2012.4641. Epub 2012 Jun 11. Antioxid Redox Signal. 2013. PMID: 22530599 Free PMC article. Review.
Cited by
- Reversion inducing cysteine rich protein with Kazal motifs and cardiovascular diseases: The RECKlessness of adverse remodeling.
Russell JJ, Grisanti LA, Brown SM, Bailey CA, Bender SB, Chandrasekar B. Russell JJ, et al. Cell Signal. 2021 Jul;83:109993. doi: 10.1016/j.cellsig.2021.109993. Epub 2021 Mar 27. Cell Signal. 2021. PMID: 33781845 Free PMC article. Review. - The synthetic triterpenoid, RTA 405, increases the glomerular filtration rate and reduces angiotensin II-induced contraction of glomerular mesangial cells.
Ding Y, Stidham RD, Bumeister R, Trevino I, Winters A, Sprouse M, Ding M, Ferguson DA, Meyer CJ, Wigley WC, Ma R. Ding Y, et al. Kidney Int. 2013 May;83(5):845-54. doi: 10.1038/ki.2012.393. Epub 2012 Dec 12. Kidney Int. 2013. PMID: 23235569 Free PMC article. - Deletion of Superoxide Dismutase 1 Blunted Inflammatory Aortic Remodeling in Hypertensive Mice under Angiotensin II Infusion.
Shiraishi Y, Ishigami N, Kujiraoka T, Sato A, Fujita M, Ido Y, Adachi T. Shiraishi Y, et al. Antioxidants (Basel). 2021 Mar 16;10(3):471. doi: 10.3390/antiox10030471. Antioxidants (Basel). 2021. PMID: 33809716 Free PMC article. - Vascular Inflammation and Smooth Muscle Contractility: The Role of Nox1-Derived Superoxide and LRRC8 Anion Channels.
Lamb FS, Choi H, Miller MR, Stark RJ. Lamb FS, et al. Hypertension. 2024 Apr;81(4):752-763. doi: 10.1161/HYPERTENSIONAHA.123.19434. Epub 2024 Jan 4. Hypertension. 2024. PMID: 38174563 Review. - Persistent oxidative stress following renal ischemia-reperfusion injury increases ANG II hemodynamic and fibrotic activity.
Basile DP, Leonard EC, Beal AG, Schleuter D, Friedrich J. Basile DP, et al. Am J Physiol Renal Physiol. 2012 Jun 1;302(11):F1494-502. doi: 10.1152/ajprenal.00691.2011. Epub 2012 Mar 21. Am J Physiol Renal Physiol. 2012. PMID: 22442209 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous