Comparative sequencing in the genus Lycopersicon. Implications for the evolution of fruit size in the domestication of cultivated tomatoes - PubMed (original) (raw)
Comparative Study
Comparative sequencing in the genus Lycopersicon. Implications for the evolution of fruit size in the domestication of cultivated tomatoes
T Clint Nesbitt et al. Genetics. 2002 Sep.
Abstract
Sequence variation was sampled in cultivated and related wild forms of tomato at fw2.2--a fruit weight QTL key to the evolution of domesticated tomatoes. Variation at fw2.2 was contrasted with variation at four other loci not involved in fruit weight determination. Several conclusions could be reached: (1) Fruit weight variation attributable to fw2.2 is not caused by variation in the FW2.2 protein sequence; more likely, it is due to transcriptional variation associated with one or more of eight nucleotide changes unique to the promoter of large-fruit alleles; (2) fw2.2 and loci not involved in fruit weight have not evolved at distinguishably different rates in cultivated and wild tomatoes, despite the fact that fw2.2 was likely a target of selection during domestication; (3) molecular-clock-based estimates suggest that the large-fruit allele of fw2.2, now fixed in most cultivated tomatoes, arose in tomato germplasm long before domestication; (4) extant accessions of L. esculentum var. cerasiforme, the subspecies thought to be the most likely wild ancestor of domesticated tomatoes, appear to be an admixture of wild and cultivated tomatoes rather than a transitional step from wild to domesticated tomatoes; and (5) despite the fact that cerasiforme accessions are polymorphic for large- and small-fruit alleles at fw2.2, no significant association was detected between fruit size and fw2.2 genotypes in the subspecies--as tested by association genetic studies in the relatively small sample studied--suggesting the role of other fruit weight QTL in fruit weight variation in cerasiforme.
Similar articles
- A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae).
Ranc N, Muños S, Santoni S, Causse M. Ranc N, et al. BMC Plant Biol. 2008 Dec 20;8:130. doi: 10.1186/1471-2229-8-130. BMC Plant Biol. 2008. PMID: 19099601 Free PMC article. - The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato.
van der Knaap E, Tanksley SD. van der Knaap E, et al. Theor Appl Genet. 2003 Jun;107(1):139-47. doi: 10.1007/s00122-003-1224-1. Epub 2003 Mar 21. Theor Appl Genet. 2003. PMID: 12835939 - Unraveling the genetics of tomato fruit weight during crop domestication and diversification.
Pereira L, Zhang L, Sapkota M, Ramos A, Razifard H, Caicedo AL, van der Knaap E. Pereira L, et al. Theor Appl Genet. 2021 Oct;134(10):3363-3378. doi: 10.1007/s00122-021-03902-2. Epub 2021 Jul 12. Theor Appl Genet. 2021. PMID: 34283260 Free PMC article. - The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon.
Monforte AJ, Diaz A, Caño-Delgado A, van der Knaap E. Monforte AJ, et al. J Exp Bot. 2014 Aug;65(16):4625-37. doi: 10.1093/jxb/eru017. Epub 2014 Feb 11. J Exp Bot. 2014. PMID: 24520021 Review. - Cell number counts--the fw2.2 and CNR genes and implications for controlling plant fruit and organ size.
Guo M, Simmons CR. Guo M, et al. Plant Sci. 2011 Jul;181(1):1-7. doi: 10.1016/j.plantsci.2011.03.010. Epub 2011 Mar 23. Plant Sci. 2011. PMID: 21600391 Review.
Cited by
- Homeologous recombination in Solanum lycopersicoides introgression lines of cultivated tomato.
Canady MA, Ji Y, Chetelat RT. Canady MA, et al. Genetics. 2006 Dec;174(4):1775-88. doi: 10.1534/genetics.106.065144. Epub 2006 Oct 22. Genetics. 2006. PMID: 17057228 Free PMC article. - Diversity in conserved genes in tomato.
Van Deynze A, Stoffel K, Buell CR, Kozik A, Liu J, van der Knaap E, Francis D. Van Deynze A, et al. BMC Genomics. 2007 Dec 18;8:465. doi: 10.1186/1471-2164-8-465. BMC Genomics. 2007. PMID: 18088428 Free PMC article. - Repeatless and repeat-based centromeres in potato: implications for centromere evolution.
Gong Z, Wu Y, Koblízková A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novák P, Buell CR, Macas J, Jiang J. Gong Z, et al. Plant Cell. 2012 Sep;24(9):3559-74. doi: 10.1105/tpc.112.100511. Epub 2012 Sep 11. Plant Cell. 2012. PMID: 22968715 Free PMC article. - Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations.
Cong B, Liu J, Tanksley SD. Cong B, et al. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13606-11. doi: 10.1073/pnas.172520999. Epub 2002 Oct 7. Proc Natl Acad Sci U S A. 2002. PMID: 12370431 Free PMC article. - Comparative analysis of chloroplast DNA variability in wild and cultivated Citrullus species.
Dane F, Lang P, Bakhtiyarova R. Dane F, et al. Theor Appl Genet. 2004 Mar;108(5):958-66. doi: 10.1007/s00122-003-1512-9. Epub 2003 Nov 21. Theor Appl Genet. 2004. PMID: 14634729
References
- Comput Appl Biosci. 1996 Oct;12(5):399-404 - PubMed
- Genetics. 1991 Jan;127(1):181-97 - PubMed
- Genome Res. 1998 Mar;8(3):195-202 - PubMed
- Proc Natl Acad Sci U S A. 1982 Aug;79(16):5006-10 - PubMed
- Bioinformatics. 1999 Feb;15(2):174-5 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources