On the selection and evolution of regulatory DNA motifs - PubMed (original) (raw)
On the selection and evolution of regulatory DNA motifs
Ulrich Gerland et al. J Mol Evol. 2002 Oct.
Abstract
The mutation and selection of regulatory DNA sequences are presented as an ideal model system of molecular evolution where genotype, phenotype, and fitness can be explicitly and independently characterized. In this theoretical study, we construct an explicit model for the evolution of regulatory sequences, making use of the known biophysics of the binding of regulatory proteins to DNA sequences, under the assumption that fitness of a sequence depends only on its binding affinity to the regulatory protein. The model is confined to the mean field (i.e., infinite population size) limit. Using realistic values for all parameters, we determine the minimum fitness advantage needed to maintain a binding sequence, demonstrating explicitly the "error threshold" below which a binding sequence cannot survive the accumulated effect of mutation over long time. The commonly observed "fuzziness" in binding motifs arises naturally as a consequence of the balance between selection and mutation in our model. In addition, we devise a simple model for the evolution of multiple binding sequences in a given regulatory region. We find the number of evolutionarily stable binding sequences to increase in a step-like fashion with increasing fitness advantage, if multiple regulatory proteins can synergistically enhance gene transcription. We discuss possible experimental approaches to resolve open questions raised by our study.
Similar articles
- Population evolution on a multiplicative single-peak fitness landscape.
Woodcock G, Higgs PG. Woodcock G, et al. J Theor Biol. 1996 Mar 7;179(1):61-73. doi: 10.1006/jtbi.1996.0049. J Theor Biol. 1996. PMID: 8733432 - Error thresholds in a mutation-selection model with Hopfield-type fitness.
Garske T. Garske T. Bull Math Biol. 2006 Oct;68(7):1715-46. doi: 10.1007/s11538-006-9072-1. Epub 2006 Jul 14. Bull Math Biol. 2006. PMID: 16841266 - Expected rates and modes of evolution of enhancer sequences.
MacArthur S, Brookfield JF. MacArthur S, et al. Mol Biol Evol. 2004 Jun;21(6):1064-73. doi: 10.1093/molbev/msh105. Epub 2004 Mar 10. Mol Biol Evol. 2004. PMID: 15014138 - Transcriptional regulation and the evolution of development.
Wray GA. Wray GA. Int J Dev Biol. 2003;47(7-8):675-84. Int J Dev Biol. 2003. PMID: 14756343 Review. - Evolution of transcriptional regulatory networks in microbial genomes.
Gelfand MS. Gelfand MS. Curr Opin Struct Biol. 2006 Jun;16(3):420-9. doi: 10.1016/j.sbi.2006.04.001. Epub 2006 May 2. Curr Opin Struct Biol. 2006. PMID: 16650982 Review.
Cited by
- Mechanisms and evolution of control logic in prokaryotic transcriptional regulation.
van Hijum SA, Medema MH, Kuipers OP. van Hijum SA, et al. Microbiol Mol Biol Rev. 2009 Sep;73(3):481-509, Table of Contents. doi: 10.1128/MMBR.00037-08. Microbiol Mol Biol Rev. 2009. PMID: 19721087 Free PMC article. Review. - Figure 1 Theory Meets Figure 2 Experiments in the Study of Gene Expression.
Phillips R, Belliveau NM, Chure G, Garcia HG, Razo-Mejia M, Scholes C. Phillips R, et al. Annu Rev Biophys. 2019 May 6;48:121-163. doi: 10.1146/annurev-biophys-052118-115525. Annu Rev Biophys. 2019. PMID: 31084583 Free PMC article. Review. - Biophysical fitness landscapes for transcription factor binding sites.
Haldane A, Manhart M, Morozov AV. Haldane A, et al. PLoS Comput Biol. 2014 Jul 10;10(7):e1003683. doi: 10.1371/journal.pcbi.1003683. eCollection 2014 Jul. PLoS Comput Biol. 2014. PMID: 25010228 Free PMC article. - Probing the informational and regulatory plasticity of a transcription factor DNA-binding domain.
Shultzaberger RK, Maerkl SJ, Kirsch JF, Eisen MB. Shultzaberger RK, et al. PLoS Genet. 2012;8(3):e1002614. doi: 10.1371/journal.pgen.1002614. Epub 2012 Mar 29. PLoS Genet. 2012. PMID: 22496663 Free PMC article. - On the incongruence of genotype-phenotype and fitness landscapes.
Srivastava M, Payne JL. Srivastava M, et al. PLoS Comput Biol. 2022 Sep 19;18(9):e1010524. doi: 10.1371/journal.pcbi.1010524. eCollection 2022 Sep. PLoS Comput Biol. 2022. PMID: 36121840 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources