X-ray structure of a bifunctional protein kinase in complex with its protein substrate HPr - PubMed (original) (raw)
Comparative Study
. 2002 Oct 15;99(21):13437-41.
doi: 10.1073/pnas.192368699. Epub 2002 Oct 1.
Affiliations
- PMID: 12359875
- PMCID: PMC129691
- DOI: 10.1073/pnas.192368699
Comparative Study
X-ray structure of a bifunctional protein kinase in complex with its protein substrate HPr
Sonia Fieulaine et al. Proc Natl Acad Sci U S A. 2002.
Abstract
HPr kinase/phosphorylase (HprK/P) controls the phosphorylation state of the phosphocarrier protein HPr and regulates the utilization of carbon sources by Gram-positive bacteria. It catalyzes both the ATP-dependent phosphorylation of Ser-46 of HPr and its dephosphorylation by phosphorolysis. The latter reaction uses inorganic phosphate as substrate and produces pyrophosphate. We present here two crystal structures of a complex of the catalytic domain of Lactobacillus casei HprK/P with Bacillus subtilis HPr, both at 2.8-A resolution. One of the structures was obtained in the presence of excess pyrophosphate, reversing the phosphorolysis reaction and contains serine-phosphorylated HPr. The complex has six HPr molecules bound to the hexameric kinase. Two adjacent enzyme subunits are in contact with each HPr molecule, one through its active site and the other through its C-terminal helix. In the complex with serine-phosphorylated HPr, a phosphate ion is in a position to perform a nucleophilic attack on the phosphoserine. Although the mechanism of the phosphorylation reaction resembles that of eukaryotic protein kinases, the dephosphorylation by inorganic phosphate is unique to the HprK/P family of kinases. This study provides the structure of a protein kinase in complex with its protein substrate, giving insights into the chemistry of the phospho-transfer reactions in both directions.
Figures
Fig 1.
The HPr–HprK/P complex. The top half of the L. casei HprK/P hexamer is viewed along its threefold axis. The three subunits colored in red, green, and blue bind three B. subtilis HPr molecules, drawn with their molecular surface in gold.
Fig 2.
The two interface regions of the HPr–HprK/P contact. Enzyme subunits are in red and green as described for Fig. 1. HPr (in gold) is phosphorylated on Ser-46. (A) Stereoview of the binding site shared by the red and green subunits. (B) The Ser-46 region of HPr interacts with the active site of the green subunit and with Arg-245 of the red subunit. The 236–258 loop bearing the arginine is ordered in the phosphorylated complex. (C) The His-15 region of HPr interacts with helix α4 of the red subunit.
Fig 3.
Stereoview of the HprK/P active site in the HPr and P-Ser-HPr complexes. (A) The complex with HPr. Dashes indicate possible hydrogen bonds. A Ca2+ ion and a water molecule are seen in the P loop formed by residues 157–162 of the enzyme. (B) The complex with Ser-46-phosphorylated HPr. The electron density around the phosphoserine and the phosphate ion is from an Fo-Fc omit map contoured at 2σ. The gray sphere is Ca2+, and Arg-245 is from a neighboring subunit.
Similar articles
- Pyrophosphate-producing protein dephosphorylation by HPr kinase/phosphorylase: a relic of early life?
Mijakovic I, Poncet S, Galinier A, Monedero V, Fieulaine S, Janin J, Nessler S, Marquez JA, Scheffzek K, Hasenbein S, Hengstenberg W, Deutscher J. Mijakovic I, et al. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13442-7. doi: 10.1073/pnas.212410399. Epub 2002 Oct 1. Proc Natl Acad Sci U S A. 2002. PMID: 12359880 Free PMC article. - Structural analysis of the bacterial HPr kinase/phosphorylase V267F mutant gives insights into the allosteric regulation mechanism of this bifunctional enzyme.
Chaptal V, Vincent F, Gueguen-Chaignon V, Monedero V, Poncet S, Deutscher J, Nessler S, Morera S. Chaptal V, et al. J Biol Chem. 2007 Nov 30;282(48):34952-7. doi: 10.1074/jbc.M705979200. Epub 2007 Sep 18. J Biol Chem. 2007. PMID: 17878158 - Phosphorylation of HPr by the bifunctional HPr Kinase/P-ser-HPr phosphatase from Lactobacillus casei controls catabolite repression and inducer exclusion but not inducer expulsion.
Dossonnet V, Monedero V, Zagorec M, Galinier A, Pérez-Martínez G, Deutscher J. Dossonnet V, et al. J Bacteriol. 2000 May;182(9):2582-90. doi: 10.1128/JB.182.9.2582-2590.2000. J Bacteriol. 2000. PMID: 10762262 Free PMC article. - HPr kinase/phosphorylase, a Walker motif A-containing bifunctional sensor enzyme controlling catabolite repression in Gram-positive bacteria.
Poncet S, Mijakovic I, Nessler S, Gueguen-Chaignon V, Chaptal V, Galinier A, Boël G, Mazé A, Deutscher J. Poncet S, et al. Biochim Biophys Acta. 2004 Mar 11;1697(1-2):123-35. doi: 10.1016/j.bbapap.2003.11.018. Biochim Biophys Acta. 2004. PMID: 15023355 Review. - Transcription regulators potentially controlled by HPr kinase/phosphorylase in Gram-negative bacteria.
Boël G, Mijakovic I, Mazé A, Poncet S, Taha MK, Larribe M, Darbon E, Khemiri A, Galinier A, Deutscher J. Boël G, et al. J Mol Microbiol Biotechnol. 2003;5(4):206-15. doi: 10.1159/000071072. J Mol Microbiol Biotechnol. 2003. PMID: 12867744 Review.
Cited by
- HPr kinase/phosphorylase, the sensor enzyme of catabolite repression in Gram-positive bacteria: structural aspects of the enzyme and the complex with its protein substrate.
Nessler S, Fieulaine S, Poncet S, Galinier A, Deutscher J, Janin J. Nessler S, et al. J Bacteriol. 2003 Jul;185(14):4003-10. doi: 10.1128/JB.185.14.4003-4010.2003. J Bacteriol. 2003. PMID: 12837773 Free PMC article. No abstract available. - Pre- and post-docking sampling of conformational changes using ClustENM and HADDOCK for protein-protein and protein-DNA systems.
Kurkcuoglu Z, Bonvin AMJJ. Kurkcuoglu Z, et al. Proteins. 2020 Feb;88(2):292-306. doi: 10.1002/prot.25802. Epub 2019 Sep 3. Proteins. 2020. PMID: 31441121 Free PMC article. - Insights into the Unique Phosphorylation of the Lasso Peptide Paeninodin.
Zhu S, Hegemann JD, Fage CD, Zimmermann M, Xie X, Linne U, Marahiel MA. Zhu S, et al. J Biol Chem. 2016 Jun 24;291(26):13662-78. doi: 10.1074/jbc.M116.722108. Epub 2016 May 5. J Biol Chem. 2016. PMID: 27151214 Free PMC article. - Interference of components of the phosphoenolpyruvate phosphotransferase system with the central virulence gene regulator PrfA of Listeria monocytogenes.
Mertins S, Joseph B, Goetz M, Ecke R, Seidel G, Sprehe M, Hillen W, Goebel W, Müller-Altrock S. Mertins S, et al. J Bacteriol. 2007 Jan;189(2):473-90. doi: 10.1128/JB.00972-06. Epub 2006 Nov 3. J Bacteriol. 2007. PMID: 17085572 Free PMC article. - RNase Y in Bacillus subtilis: a Natively disordered protein that is the functional equivalent of RNase E from Escherichia coli.
Lehnik-Habrink M, Newman J, Rothe FM, Solovyova AS, Rodrigues C, Herzberg C, Commichau FM, Lewis RJ, Stülke J. Lehnik-Habrink M, et al. J Bacteriol. 2011 Oct;193(19):5431-41. doi: 10.1128/JB.05500-11. Epub 2011 Jul 29. J Bacteriol. 2011. PMID: 21803996 Free PMC article.
References
- Hunter T. (2000) Cell 100, 113-127. - PubMed
- Saier M. H., Wu, L. F. & Reizer, J. (1990) Trends Biochem. Sci. 15, 391-395. - PubMed
- Stülke J. & Hillen, W. (2000) Annu. Rev. Microbiol. 54, 849-880. - PubMed
- Deutscher J., Galinier, A. & Martin-Verstraete, I. (2001) in Bacillus subtilis and Its Closest Relatives: From Genes to Cells, eds. Sonenschein, A. L., Hoch, J. A. & Losick, R. (Am. Soc. Microbiol., Washington, DC), pp. 129–150.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases