Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes - PubMed (original) (raw)
Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes
Gregory B Waypa et al. Circ Res. 2002.
Abstract
We hypothesized that mitochondria function as the O2 sensors underlying hypoxic pulmonary vasoconstriction by releasing reactive oxygen species (ROS) from complex III of the electron transport chain (ETC). We have previously found that antioxidants or inhibition of the proximal region of the ETC attenuates hypoxic pulmonary vasoconstriction in rat lungs and blocks hypoxia-induced contraction of isolated pulmonary arterial (PA) myocytes. To determine whether the hypoxia-induced increases in mitochondrial ROS act to trigger calcium increases, we measured changes in cytosolic calcium ([Ca2+]i) using fura 2-AM (fluorescence at 340/380 nm) during perfusion with hypoxic media (PO2 12 mm Hg). Hypoxia caused an increase in fura 2 fluorescence, indicating an increase in [Ca2+]i. In superfused PA myocytes, diphenyleneiodonium, rotenone, and myxothiazol, which inhibit the proximal region of the ETC, attenuated hypoxia-induced calcium increases. Antimycin A and cyanide, which inhibit the distal region of the ETC, failed to abolish hypoxia-induced [Ca2+]i increases. To test whether mitochondrial H2O2 is required to trigger [Ca2+]i increases, catalase was overexpressed in PA myocytes with the use of a recombinant adenovirus. Catalase overexpression attenuated hypoxia-induced increases in [Ca2+]i, suggesting that H2O2 acts upstream from calcium increases during hypoxia. These results support the conclusion that mitochondria function as O2 sensors during hypoxia and demonstrate that ROS generated in the proximal region of the ETC act as second messengers to trigger calcium increases in PA myocytes during acute hypoxia.
Comment in
- Hypoxic pulmonary vasoconstriction: ups and downs of reactive oxygen species.
Sham JS. Sham JS. Circ Res. 2002 Oct 18;91(8):649-51. doi: 10.1161/01.res.0000039065.10754.de. Circ Res. 2002. PMID: 12386138 No abstract available.
Similar articles
- Role of mitochondrial reactive oxygen species in hypoxia-dependent increase in intracellular calcium in pulmonary artery myocytes.
Wang QS, Zheng YM, Dong L, Ho YS, Guo Z, Wang YX. Wang QS, et al. Free Radic Biol Med. 2007 Mar 1;42(5):642-53. doi: 10.1016/j.freeradbiomed.2006.12.008. Epub 2006 Dec 14. Free Radic Biol Med. 2007. PMID: 17291988 Free PMC article. - Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing.
Waypa GB, Chandel NS, Schumacker PT. Waypa GB, et al. Circ Res. 2001 Jun 22;88(12):1259-66. doi: 10.1161/hh1201.091960. Circ Res. 2001. PMID: 11420302 - Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells.
Waypa GB, Guzy R, Mungai PT, Mack MM, Marks JD, Roe MW, Schumacker PT. Waypa GB, et al. Circ Res. 2006 Oct 27;99(9):970-8. doi: 10.1161/01.RES.0000247068.75808.3f. Epub 2006 Sep 28. Circ Res. 2006. PMID: 17008601 - Cross Talk Between Mitochondrial Reactive Oxygen Species and Sarcoplasmic Reticulum Calcium in Pulmonary Arterial Smooth Muscle Cells.
Song T, Zheng YM, Wang YX. Song T, et al. Adv Exp Med Biol. 2017;967:289-298. doi: 10.1007/978-3-319-63245-2_17. Adv Exp Med Biol. 2017. PMID: 29047093 Review. - Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation.
Archer SL, Weir EK, Reeve HL, Michelakis E. Archer SL, et al. Adv Exp Med Biol. 2000;475:219-40. doi: 10.1007/0-306-46825-5_21. Adv Exp Med Biol. 2000. PMID: 10849663 Review.
Cited by
- Contribution of Mitochondrial Reactive Oxygen Species to Chronic Hypoxia-Induced Pulmonary Hypertension.
Yan S, Sheak JR, Walker BR, Jernigan NL, Resta TC. Yan S, et al. Antioxidants (Basel). 2023 Nov 30;12(12):2060. doi: 10.3390/antiox12122060. Antioxidants (Basel). 2023. PMID: 38136180 Free PMC article. - Role of mitochondrial reactive oxygen species in hypoxia-dependent increase in intracellular calcium in pulmonary artery myocytes.
Wang QS, Zheng YM, Dong L, Ho YS, Guo Z, Wang YX. Wang QS, et al. Free Radic Biol Med. 2007 Mar 1;42(5):642-53. doi: 10.1016/j.freeradbiomed.2006.12.008. Epub 2006 Dec 14. Free Radic Biol Med. 2007. PMID: 17291988 Free PMC article. - Heme oxygenase-1 induction modulates hypoxic pulmonary vasoconstriction through upregulation of ecSOD.
Ahmad M, Zhao X, Kelly MR, Kandhi S, Perez O, Abraham NG, Wolin MS. Ahmad M, et al. Am J Physiol Heart Circ Physiol. 2009 Oct;297(4):H1453-61. doi: 10.1152/ajpheart.00315.2009. Epub 2009 Aug 7. Am J Physiol Heart Circ Physiol. 2009. PMID: 19666846 Free PMC article. - Acute hypoxia selectively inhibits KCNA5 channels in pulmonary artery smooth muscle cells.
Platoshyn O, Brevnova EE, Burg ED, Yu Y, Remillard CV, Yuan JX. Platoshyn O, et al. Am J Physiol Cell Physiol. 2006 Mar;290(3):C907-16. doi: 10.1152/ajpcell.00028.2005. Epub 2005 Oct 19. Am J Physiol Cell Physiol. 2006. PMID: 16236819 Free PMC article. - Oxidized-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine induces vascular endothelial superoxide production: implication of NADPH oxidase.
Rouhanizadeh M, Hwang J, Clempus RE, Marcu L, Lassègue B, Sevanian A, Hsiai TK. Rouhanizadeh M, et al. Free Radic Biol Med. 2005 Dec 1;39(11):1512-22. doi: 10.1016/j.freeradbiomed.2005.07.013. Epub 2005 Aug 10. Free Radic Biol Med. 2005. PMID: 16274886 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
- HL-10405/HL/NHLBI NIH HHS/United States
- R01 NS038547-02/NS/NINDS NIH HHS/United States
- HL-66315/HL/NHLBI NIH HHS/United States
- HL-35440/HL/NHLBI NIH HHS/United States
- R01 NS038547-04/NS/NINDS NIH HHS/United States
- R01 NS038547-05/NS/NINDS NIH HHS/United States
- R01 NS038547/NS/NINDS NIH HHS/United States
- R01 NS038547-03/NS/NINDS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Miscellaneous