Triton promotes domain formation in lipid raft mixtures - PubMed (original) (raw)
Triton promotes domain formation in lipid raft mixtures
H Heerklotz. Biophys J. 2002 Nov.
Abstract
Biological membranes are supposed to contain functional domains (lipid rafts) made up in particular of sphingomyelin and cholesterol, glycolipids, and certain proteins. It is often assumed that the application of the detergent Triton at 4 degrees C allows the isolation of these rafts as a detergent-resistant membrane fraction. The current study aims to clarify whether and how Triton changes the domain properties. To this end, temperature-dependent transitions in vesicles of an equimolar mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, egg sphingomyelin, and cholesterol were monitored at different Triton concentrations by differential scanning calorimetry and pressure perturbation calorimetry. Transitions initiated by the addition of Triton to the lipid mixture were studied by isothermal titration calorimetry, and the structure was investigated by (31)P-NMR. The results are discussed in terms of liquid-disordered (ld) and -ordered (lo) bilayer and micellar (mic) phases, and the typical sequence encountered with increasing Triton content or decreasing temperature is ld, ld + lo, ld + lo + mic, and lo + mic. That means that addition of Triton may create ordered domains in a homogeneous fluid membrane, which are, in turn, Triton resistant upon subsequent membrane solubilization. Hence, detergent-resistant membranes should not be assumed to resemble biological rafts in size, structure, composition, or even existence. Functional rafts may not be steady phenomena; they might form, grow, cluster or break up, shrink, and vanish according to functional requirements, regulated by rather subtle changes in the activity of membrane disordering or ordering compounds.
Similar articles
- The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton.
Heerklotz H, Szadkowska H, Anderson T, Seelig J. Heerklotz H, et al. J Mol Biol. 2003 Jun 13;329(4):793-9. doi: 10.1016/s0022-2836(03)00504-7. J Mol Biol. 2003. PMID: 12787678 - Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers.
Sot J, Bagatolli LA, Goñi FM, Alonso A. Sot J, et al. Biophys J. 2006 Feb 1;90(3):903-14. doi: 10.1529/biophysj.105.067710. Epub 2005 Nov 11. Biophys J. 2006. PMID: 16284266 Free PMC article. - Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications.
Barenholz Y. Barenholz Y. Subcell Biochem. 2004;37:167-215. doi: 10.1007/978-1-4757-5806-1_5. Subcell Biochem. 2004. PMID: 15376621 Review. - A lipid matrix model of membrane raft structure.
Quinn PJ. Quinn PJ. Prog Lipid Res. 2010 Oct;49(4):390-406. doi: 10.1016/j.plipres.2010.05.002. Epub 2010 May 15. Prog Lipid Res. 2010. PMID: 20478335 Review.
Cited by
- Lipid raft involvement in yeast cell growth and death.
Mollinedo F. Mollinedo F. Front Oncol. 2012 Oct 10;2:140. doi: 10.3389/fonc.2012.00140. eCollection 2012. Front Oncol. 2012. PMID: 23087902 Free PMC article. - Palmitoylated Proteins in Dendritic Spine Remodeling.
Albanesi JP, Barylko B, DeMartino GN, Jameson DM. Albanesi JP, et al. Front Synaptic Neurosci. 2020 Jun 16;12:22. doi: 10.3389/fnsyn.2020.00022. eCollection 2020. Front Synaptic Neurosci. 2020. PMID: 32655390 Free PMC article. - Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy.
Humpolícková J, Gielen E, Benda A, Fagulova V, Vercammen J, Vandeven M, Hof M, Ameloot M, Engelborghs Y. Humpolícková J, et al. Biophys J. 2006 Aug 1;91(3):L23-5. doi: 10.1529/biophysj.106.089474. Epub 2006 Jun 2. Biophys J. 2006. PMID: 16751239 Free PMC article. - Association with membrane protrusions makes ErbB2 an internalization-resistant receptor.
Hommelgaard AM, Lerdrup M, van Deurs B. Hommelgaard AM, et al. Mol Biol Cell. 2004 Apr;15(4):1557-67. doi: 10.1091/mbc.e03-08-0596. Epub 2004 Jan 23. Mol Biol Cell. 2004. PMID: 14742716 Free PMC article. - Lipid raft-based membrane compartmentation of a plant transport protein expressed in Saccharomyces cerevisiae.
Grossmann G, Opekarova M, Novakova L, Stolz J, Tanner W. Grossmann G, et al. Eukaryot Cell. 2006 Jun;5(6):945-53. doi: 10.1128/EC.00206-05. Eukaryot Cell. 2006. PMID: 16757742 Free PMC article.
References
- Biophys J. 2002 Mar;82(3):1469-82 - PubMed
- Biochim Biophys Acta. 1991 Jan 30;1061(2):297-303 - PubMed
- Anal Biochem. 2002 Mar 1;302(1):144-60 - PubMed
- J Supramol Struct. 1973;1(3):233-48 - PubMed
- Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8686-90 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials