Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes - PubMed (original) (raw)
Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes
Ahmed H Hassan et al. Cell. 2002.
Free article
Abstract
The functions of the SAGA and SWI/SNF complexes are interrelated and can form stable "epigenetic marks" on promoters in vivo. Here we show that stable promoter occupancy by SWI/SNF and SAGA in the absence of transcription activators requires the bromodomains of the Swi2/Snf2 and Gcn5 subunits, respectively, and nucleosome acetylation. This acetylation can be brought about by either the SAGA or NuA4 HAT complexes. The bromodomain in the Spt7 subunit of SAGA is dispensable for this activity but will anchor SAGA if it is swapped into Gcn5, indicating that specificity of bromodomain function is determined in part by the subunit it occupies. Thus, bromodomains within the catalytic subunits of SAGA and SWI/SNF anchor these complexes to acetylated promoter nucleosomes.
Comment in
- Cellular memory and the histone code.
Turner BM. Turner BM. Cell. 2002 Nov 1;111(3):285-91. doi: 10.1016/s0092-8674(02)01080-2. Cell. 2002. PMID: 12419240 Review.
Similar articles
- The Swi2/Snf2 bromodomain is required for the displacement of SAGA and the octamer transfer of SAGA-acetylated nucleosomes.
Hassan AH, Awad S, Prochasson P. Hassan AH, et al. J Biol Chem. 2006 Jun 30;281(26):18126-34. doi: 10.1074/jbc.M602851200. Epub 2006 Apr 28. J Biol Chem. 2006. PMID: 16648632 - The Gcn5 bromodomain co-ordinates nucleosome remodelling.
Syntichaki P, Topalidou I, Thireos G. Syntichaki P, et al. Nature. 2000 Mar 23;404(6776):414-7. doi: 10.1038/35006136. Nature. 2000. PMID: 10746732 - Recruitment of chromatin remodelling factors during gene activation via the glucocorticoid receptor N-terminal domain.
Wallberg AE, Flinn EM, Gustafsson JA, Wright AP. Wallberg AE, et al. Biochem Soc Trans. 2000;28(4):410-4. Biochem Soc Trans. 2000. PMID: 10961930 Review. - Promoter targeting of chromatin-modifying complexes.
Hassan AH, Neely KE, Vignali M, Reese JC, Workman JL. Hassan AH, et al. Front Biosci. 2001 Sep 1;6:D1054-64. doi: 10.2741/hassan. Front Biosci. 2001. PMID: 11532604 Review.
Cited by
- Balancing chromatin remodeling and histone modifications in transcription.
Petty E, Pillus L. Petty E, et al. Trends Genet. 2013 Nov;29(11):621-9. doi: 10.1016/j.tig.2013.06.006. Epub 2013 Jul 16. Trends Genet. 2013. PMID: 23870137 Free PMC article. Review. - The chromatin-binding protein HMGN3 stimulates histone acetylation and transcription across the Glyt1 gene.
Barkess G, Postnikov Y, Campos CD, Mishra S, Mohan G, Verma S, Bustin M, West KL. Barkess G, et al. Biochem J. 2012 Mar 15;442(3):495-505. doi: 10.1042/BJ20111502. Biochem J. 2012. PMID: 22150271 Free PMC article. - The role of DNA methylation and histone modifications in transcriptional regulation in humans.
Miller JL, Grant PA. Miller JL, et al. Subcell Biochem. 2013;61:289-317. doi: 10.1007/978-94-007-4525-4_13. Subcell Biochem. 2013. PMID: 23150256 Free PMC article. Review. - Epigenetically maintained SW13+ and SW13- subtypes have different oncogenic potential and convert with HDAC1 inhibition.
Davis MR, Daggett JJ, Pascual AS, Lam JM, Leyva KJ, Cooper KE, Hull EE. Davis MR, et al. BMC Cancer. 2016 May 17;16:316. doi: 10.1186/s12885-016-2353-7. BMC Cancer. 2016. PMID: 27188282 Free PMC article. - Cell cycle regulation of chromatin at an origin of DNA replication.
Zhou J, Chau CM, Deng Z, Shiekhattar R, Spindler MP, Schepers A, Lieberman PM. Zhou J, et al. EMBO J. 2005 Apr 6;24(7):1406-17. doi: 10.1038/sj.emboj.7600609. Epub 2005 Mar 17. EMBO J. 2005. PMID: 15775975 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases