Morphogen gradients, positional information, and Xenopus: interplay of theory and experiment - PubMed (original) (raw)
Review
. 2002 Dec;225(4):392-408.
doi: 10.1002/dvdy.10170.
Affiliations
- PMID: 12454918
- DOI: 10.1002/dvdy.10170
Free article
Review
Morphogen gradients, positional information, and Xenopus: interplay of theory and experiment
Jeremy Green. Dev Dyn. 2002 Dec.
Free article
Abstract
The idea of morphogen gradients has long been an important one in developmental biology. Studies with amphibians and with Xenopus in particular have made significant contributions to demonstrating the existence, identity, and mechanisms of action of morphogens. Mesoderm induction and patterning by activin, nodals, bone morphogenetic proteins, and fibroblast growth factors have been analyzed thoroughly and reveal recurrent and combinatorial roles for these protein growth factor morphogens and their antagonists. The dynamics of nodal-type signaling and the intersection of VegT and beta-catenin intracellular gradients reveal detailed steps in early long-range patterning. Interpretation of gradients requires sophisticated mechanisms for sharpening thresholds, and the activin-Xbra-Gsc system provides an example of this. The understanding of growth factor signal transduction has elucidated growth factor morphogen action and provided tools for dissecting their direct long-range action and distribution. The physical mechanisms of morphogen gradient establishment are the focus of new interest at both the experimental and theoretical level. General themes and emerging trends in morphogen gradient studies are discussed.
Copyright 2002 Wiley-Liss, Inc.
Similar articles
- BMP signalling in early Xenopus development.
Dale L, Jones CM. Dale L, et al. Bioessays. 1999 Sep;21(9):751-60. doi: 10.1002/(SICI)1521-1878(199909)21:9<751::AID-BIES6>3.0.CO;2-I. Bioessays. 1999. PMID: 10462415 Review. - Mathematical model of the formation of morphogen gradients through membrane-associated non-receptors.
Lei J, Song Y. Lei J, et al. Bull Math Biol. 2010 May;72(4):805-29. doi: 10.1007/s11538-009-9470-2. Epub 2009 Oct 31. Bull Math Biol. 2010. PMID: 19882189 - A mechanism for the sharp transition of morphogen gradient interpretation in Xenopus.
Saka Y, Smith JC. Saka Y, et al. BMC Dev Biol. 2007 May 16;7:47. doi: 10.1186/1471-213X-7-47. BMC Dev Biol. 2007. PMID: 17506890 Free PMC article. - The morphogen signaling network in forebrain development and holoprosencephaly.
Monuki ES. Monuki ES. J Neuropathol Exp Neurol. 2007 Jul;66(7):566-75. doi: 10.1097/nen.0b013e3180986e1b. J Neuropathol Exp Neurol. 2007. PMID: 17620982 Review. - Scaling of morphogen gradients.
Ben-Zvi D, Shilo BZ, Barkai N. Ben-Zvi D, et al. Curr Opin Genet Dev. 2011 Dec;21(6):704-10. doi: 10.1016/j.gde.2011.07.011. Epub 2011 Aug 26. Curr Opin Genet Dev. 2011. PMID: 21873045 Review.
Cited by
- Extracellular interactions and ligand degradation shape the nodal morphogen gradient.
Wang Y, Wang X, Wohland T, Sampath K. Wang Y, et al. Elife. 2016 Apr 21;5:e13879. doi: 10.7554/eLife.13879. Elife. 2016. PMID: 27101364 Free PMC article. - Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes.
Mondia JP, Adams DS, Orendorff RD, Levin M, Omenetto FG. Mondia JP, et al. Biomed Opt Express. 2011 Aug 1;2(8):2383-91. doi: 10.1364/BOE.2.002383. Epub 2011 Jul 27. Biomed Opt Express. 2011. PMID: 21833375 Free PMC article. - Particle tracking model of electrophoretic morphogen movement reveals stochastic dynamics of embryonic gradient.
Zhang Y, Levin M. Zhang Y, et al. Dev Dyn. 2009 Aug;238(8):1923-35. doi: 10.1002/dvdy.22016. Dev Dyn. 2009. PMID: 19618466 Free PMC article. - APOBEC2, a selective inhibitor of TGFβ signaling, regulates left-right axis specification during early embryogenesis.
Vonica A, Rosa A, Arduini BL, Brivanlou AH. Vonica A, et al. Dev Biol. 2011 Feb 1;350(1):13-23. doi: 10.1016/j.ydbio.2010.09.016. Epub 2010 Sep 27. Dev Biol. 2011. PMID: 20880495 Free PMC article. - CHD4/Mi-2beta activity is required for the positioning of the mesoderm/neuroectoderm boundary in Xenopus.
Linder B, Mentele E, Mansperger K, Straub T, Kremmer E, Rupp RA. Linder B, et al. Genes Dev. 2007 Apr 15;21(8):973-83. doi: 10.1101/gad.409507. Genes Dev. 2007. PMID: 17438000 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials