The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation - PubMed (original) (raw)

. 2003 Feb 21;278(8):6258-67.

doi: 10.1074/jbc.M212231200. Epub 2002 Dec 6.

Affiliations

Free article

The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation

Akira Tohgo et al. J Biol Chem. 2003.

Free article

Abstract

By binding to agonist-activated G protein-coupled receptors (GPCRs), beta-arrestins mediate homologous receptor desensitization and endocytosis via clathrin-coated pits. Recent data suggest that beta-arrestins also contribute to GPCR signaling by acting as scaffolds for components of the ERK mitogen-activated protein kinase cascade. Because of these dual functions, we hypothesized that the stability of the receptor-beta-arrestin interaction might affect the mechanism and functional consequences of GPCR-stimulated ERK activation. In transfected COS-7 cells, we found that angiotensin AT1a and vasopressin V2 receptors, which form stable receptor-beta-arrestin complexes, activated a beta-arrestin-bound pool of ERK2 more efficiently than alpha 1b and beta2 adrenergic receptors, which form transient receptor-beta-arrestin complexes. We next studied chimeric receptors in which the pattern of beta-arrestin binding was reversed by exchanging the C-terminal tails of the beta2 and V2 receptors. The ability of the V2 beta 2 and beta 2V2 chimeras to activate beta-arrestin-bound ERK2 corresponded to the pattern of beta-arrestin binding, suggesting that the stability of the receptor-beta-arrestin complex determined the mechanism of ERK2 activation. Analysis of covalently cross-linked detergent lysates and cellular fractionation revealed that wild type V2 receptors generated a larger pool of cytosolic phospho-ERK1/2 and less nuclear phospho-ERK1/2 than the chimeric V2 beta 2 receptor, consistent with the cytosolic retention of beta-arrestin-bound ERK. In stably transfected HEK-293 cells, the V2 beta 2 receptor increased ERK1/2-mediated, Elk-1-driven transcription of a luciferase reporter to a greater extent than the wild type V2 receptor. Furthermore, the V2 beta 2, but not the V2 receptor, was capable of eliciting a mitogenic response. These data suggest that the C-terminal tail of a GPCR, by determining the stability of the receptor-beta-arrestin complex, controls the extent of beta-arrestin-bound ERK activation, and influences both the subcellular localization of activated ERK and the physiologic consequences of ERK activation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources